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Abstract

This report performs weak inhomogeneity expansion for the continuous Gaussian chain model of a homopolymer
in an external field. The aim is to understand where does the Debye function come from. This technique constitutes
the main parts of the random phase approximation (RPA). By extending this technique from single-chain formulation
to many-chain formulation and regarding the potential field arising from interaction with other chains in the same
system as an external field, RPA is equivalent to the weak inhomogeneity expansion.

1 Continuous Gaussian Chain

The normalized single partition function for a continuous Gaussian chain under an external field is given by1

Q[w] =
1
V

∫
dx q(x, 1; [w]) (1)

where the physical length is scaled by the radius of gyration of a non-perturb Gaussian chain Rg =
√

Nb2/6. The
volume V is also dimensionless scaled by R3

g.
The propagator q in the above equation satisfies the Fokker-Planck equation, also known as the modified diffusion

equation (MDE)
∂q(x, s; [w])

∂s
= ∇2q(x, s; [w])− w(x)q(x, s; [w]) (2)

subject to the initial condition
q(x, 0; [w]) = 1 (3)

Note that to write the MDE in the form as in eq. (2), w(x) is actually N times the external potential field. Assuming
the external field is W(x), then w(x) = NW(x)

For a given external field w(x), we can obtain the propagator by solving eq. (2).

2 Weak Inhomogeneity Expansion

In general, it is impossible to find an analytic solution to the MDE with a general w(x). However, a particularly
perturbation expansion can be derived when the applied potential field w(x) has inhomogeneities that are weak in
amplitude. To define such a situation, we introduce the volume average of the potential

w0 ≡
1
V

∫
dx w(x) (4)

and re-express w(x) according to
w(x) = w0 + εω(x) (5)
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which serves to define the inhomogeneous part of the field, εω(x). For weak inhomogeneities, a small parameter ε
(|ε| � 1) describes their characteristic amplitude. For the continuous Gaussian chain model of a homopolymer, the
MDE and initial condition become

∂q(x, s)
∂s

= ∇2q(x, s)− w0q(x, s)− εω(x)q(x, s) (6)

q(x, 0) = 1 (7)

where the functional dependence of q on w(x) has been suppressed in our notation. The term proportional to w0 on
the right-hand side of eq. (6) can be removed by the substitution

q(x, s) = e−w0s p(x, s) (8)

which leads to
∂p(x, s)

∂s
= ∇2 p(x, s)− εω(x)p(x, s) (9)

p(x, 0) = 1 (10)

A weak inhomogeneity expansion can be developed by assuming that p(x, s) can be expressed as

p(x, s) ∼
∞

∑
j=0

εj p(j)(x, s) (11)

where the p(j)(x, s) are independent of ε. In eq. (11) we adopt the conventional notation ∼ to indicate an asymptotic
expansion. As such, the infinite series on the right-hand side may be either convergent or divergent. Even when it
does not converge, eq. (11) can still be useful in truncated form for approximating p(x, s) at sufficiently small ε.

The p(j) are calculated by inserting eq. (11) into eq. (9) and equating terms order by order in ε.

2.1 Zero-th Order Solution

At leading order, O(ε0), we have
∂p(0)(x, s)

∂s
= ∇2 p(0)(x, s) (12)

p(0)(x, 0) = 1 (13)

which has the trivial solution
p(0)(x, s) = 1 (14)

2.2 First Order Solution

At O(ε1), the corresponding equations (see Appendix A for derivation) are

∂p(1)(x, s)
∂s

= ∇2 p(1)(x, s)−ω(x)p(0)(x, s) (15)

p(1)(x, 0) = 0 (16)

Provided the system under consideration is unbounded or subject to periodic boundary conditions, this initial value
problem is most easily solved by means of spatial Fourier transforms. Defining Fourier transforms in accordance
with

f̂ (k) ≡
∫

dx e−ik·x f (x) (17)

and assuming that the Fourier transform of ω(x) exists, denoted by ω̂(k), one finds that (See Appendix B for
derivation)

p̂(1)(k, s) = −ĥ2(k, s)ω̂(k) (18)

where the carets denote Fourier-transformed quantities and

ĥ2(k, s) ≡ 1
k2

(
1− e−k2s

)
(19)
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2.3 Second Order Solution

At O(ε2), the corresponding equations (see Appendix C for derivation) are

∂p(2)(x, s)
∂s

= ∇2 p(2)(x, s)−ω(x)p(1)(x, s) (20)

p(2)(x, 0) = 0 (21)

A similar procedure leads to (see Appendix D for derivation)

p̂(2)(k, s) =
1
V ∑

k′
ĥ3(k, k′, s)ω̂(k− k′)ω̂(k′) (22)

with

ĥ3(k, k′, s) =
1

k2 |k− k′|2

[
1− e−k2s − k2

k2 − |k− k′|2
(

e−|k−k′ |2s − e−k2s
)]

(23)

2.4 Expansion of Q

We can expand the normalized single partition function Q based on above perturbation expansion of the propagator
q. The propagator being expanded to O(ε2) is

q(x, s) = e−w0s p(x, s)

∼
2

∑
j=0

εj p(j)(x, s)

= e−w0s
[

p(0)(x, s) + εp(1)(x, s) + ε2 p(2)(x, s)
]

= e−w0s
[
1 + εp(1)(x, s) + ε2 p(2)(x, s)

]
(24)

Therefore we can expand Q as

Q[w] =
1
V

∫
dx q(x, 1)

∼ 1
V

∫
dx e−w0

[
1 + εp(1)(x, 1) + ε2 p(2)(x, 1)

]
= e−w0

[
1
V

∫
dx +

1
V

∫
dx εp(1)(x, 1) +

1
V

∫
dx ε2 p(2)(x, 1)

]
= e−w0

[
1 +

ε

V

∫
dx p(1)(x, 1) +

ε2

V

∫
dx p(2)(x, 1)

]
(25)

It is more convenient to write the integrals of p(j) in Fourier space, which can be expressed as∫
dx p(1)(x, 1) =

∫
dx

1
(2π)3

∫
dk p̂(1)(k, 1)eik·x

=
∫

dk p̂(1)(k, 1)
[

1
(2π)3

∫
dx eik·x

]
=
∫

dk p̂(1)(k, 1)δ(k)

= p̂(1)(0, 1)

(26)

and ∫
dx p(2)(x, 1) =

∫
dx

1
(2π)3

∫
dk p̂(2)(k, 1)eik·x

=
∫

dk p̂(2)(k, 1)
[

1
(2π)3

∫
dx eik·x

]
=
∫

dk p̂(2)(k, 1)δ(k)

= p̂(2)(0, 1)

(27)
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Now we can express Q in the Fourier space as

Q[w] ∼ e−w0

[
1 +

ε

V
p̂(1)(0, 1) +

ε2

V
p̂(2)(0, 1)

]
(28)

The expansion of Q can be further simplified. Firstly, we know that the volume average of the fluctuation of the
potential field is 0 because

1
V

∫
dx ω(x) =

1
V

∫
dx [w(x)− w0]

=
1
V

∫
dx w(x)− 1

V

∫
dx w0

= w0 −
1
V

w0V

= 0

(29)

The value of the Fourier transform of the potential field at zero wave number is equal to this average because∫
dx ω(x) =

∫
dx

1
(2π)3

∫
dk ω̂(k)eik·x

=
∫

dk
1

(2π)3

∫
dx ω̂(k)eik·x

=
∫

dk ω̂(k)
[

1
(2π)3

∫
dx eik·x

]
=
∫

dk ω̂(k)δ(k)

= ω̂(0)

(30)

Therefore, one obtains
ω̂(0) = 0 (31)

Substituting this into eq. (18) gives
p̂(1)(0, 1) = 0 (32)

Secondly, from eq. (22) we know

p̂(2)(0, 1) =
1
V ∑

k′
ĥ3(0, k′, 1)ω̂(−k′)ω̂(k′)

=
1
V ∑

k
ĥ3(0, k, 1)ω̂(−k)ω̂(k)

(33)

In the second line, we only change the summation variable from k′ to k. Noting that

ĥ3(0, k′, 1) = lim
k→0

ĥ3(k, k′, 1)

= lim
k→0

1

k2 |k− k′|2

[
1− e−k2 − k2

k2 − |k− k′|2
(

e−|k−k′ |2 − e−k2
)]

= lim
k→0

1

k2 |k− k′|2
(

1− e−k2
)
− lim

k→0

1

k2 |k− k′|2
k2

k2 − |k− k′|2
(

e−|k−k′ |2 − e−k2
)

= lim
k→0

1

k2 |k− k′|2
[
1− (1− k2)

]
+

1
k′4
(

e−k′2 − 1
)

=
1

k′2
+

1
k′4
(

e−k′2 − 1
)

(34)

Let
x = k′2 (35)

4



Then it becomes

ĥ3(0, k′, 1) =
1
x
+

1
x2

(
e−x − 1

)
=

1
x2

(
e−x + x− 1

) (36)

This is where the well known Debye function comes from, which is defined as

ĝD(x) =
2
x2

(
e−x + x− 1

)
(37)

Therefore,

ĥ3(0, k′, 1) =
1
2

ĝD(x) (38)

Insert eq. (32), (33), and (38) into eq. (28), we arrive the final expansion of Q in the Fourier space

Q[w] ∼ e−w0

[
1 +

ε2

2V2 ∑
k

ĝD(k2)ω̂(−k)ω̂(k)

]
(39)

or, by inverting the Fourier transforms,

Q[w] ∼ e−w0

[
1 +

ε2

2V2 ∑
k

ĝD(k2)ω̂(−k)ω̂(k)

]

∼ e−w0

{
1 +

ε2

2V2 ∑
k

ĝD(k2)

[∫
dx ω(x)eik·x

] [∫
dx′ ω(x′)e−ik·x′

]}

∼ e−w0

{
1 +

ε2

2V

∫
dx
∫

dx′
[

1
V ∑

k
ĝD(k2)eik·(x−x′)

]
ω(x)ω(x′)

} (40)

If we define the inverse transform of the Debye function as

gD(
∣∣x− x′

∣∣) = 1
V ∑

k
ĝD(k2)eik·(x−x′)

=
1

(2π)3

∫
dk ĝD(k2)eik·(x−x′)

(41)

Then the expansion of Q in real space can be written as

Q[w] ∼ e−w0

[
1 +

ε2

2V

∫
dx
∫

dx′ gD(
∣∣x− x′

∣∣)ω(x)ω̂(x′)
]

(42)

2.5 Expansion of the Density Operator

A weak inhomogeneity expansion for the segment density operator ρ(x; [w]) can be obtained in one of two equivalent
ways. One way is expressing ρ(x; [w]) as an integral of the propagator, such as

ρ(x; [w]) =
1

VQ[w]

∫ 1

0
q(x, 1− s; [w])q(x, s; [w]) (43)

and substituting the weak inhomogeneity expansion of the propagator eq. (8) and (11) into above equation and
keeping to a certain order. The other way is performing a direct functional differentiation of eq. (42) according to

ρ(x; [w]) = ρ(x; [W(x)])

= − δln Q[W(x)]
δW(x)

= −N
δln Q[W(x)]

δNW(x)

= −N
δln Q[w]

δw

(44)

5



Here we Follow the latter approach. From eq. (42) we have

ln Q[w] ∼ −w0 + ln
[

1 +
ε2

2V

∫
dx
∫

dx′ gD(
∣∣x− x′

∣∣)ω(x)ω̂(x′)
]

(45)

From eq. (4) we have
δw0

δw
=

1
V

(46)

From eq. (5) we have
δω

δw
=

1
ε

(47)

Now we can perform the functional differentiation as

ρ(x; [w]) = −N
δln Q[w]

δw

= N
δw0

δw
− δ

δw
ln
[

1 +
ε2

2V

∫
dx
∫

dx′ gD(
∣∣x− x′

∣∣)ω(x)ω̂(x′)
]

=
N
V
− N

δ

δω
ln
[

1 +
ε2

2V

∫
dx
∫

dx′ gD(
∣∣x− x′

∣∣)ω(x)ω̂(x′)
]

δω

δw

= ρ0 − N
1
ε

δ

δω
ln
[

1 +
ε2

2V

∫
dx
∫

dx′ gD(
∣∣x− x′

∣∣)ω(x)ω̂(x′)
]

= ρ0 − N
1
ε

1

1 + ε2

2V
∫

dx
∫

dx′ gD(|x− x′|)ω(x)ω̂(x′)

ε2

2V
2
∫

dx′ gD(
∣∣x− x′

∣∣)ω(x′)

= ρ0 − ρ0ε
1

1 + ε2

2V
∫

dx
∫

dx′ gD(|x− x′|)ω(x)ω̂(x′)

∫
dx′ gD(

∣∣x− x′
∣∣)ω(x′)

(48)

where ρ0 ≡ N/V is the volume-average segment density of a single chain. If we only retain the first order contribution
of ε, above equation can be simplified to

ρ(x; [w]) = ρ0 − ρ0ε
∫

dx′ gD(
∣∣x− x′

∣∣)ω(x′) (49)

Or we can use eq. (5) to rewrite ρ as a functional of w instead of ω

ρ(x; [w]) = ρ0

[
1−

∫
dx′ gD(

∣∣x− x′
∣∣)(w− w0)

]
(50)

We can also inverse the above equation to predict what external field should be applied if we want to obtain a
certain segment density. Such inversion can be done in the Fourier space

φ̂(k) = −ĝD(k2)∆̂w(k) (51)

where φ = ρ/ρ0 − 1 is the dimensionless fluctuation of segment density around its volume-average value and
∆w = w− w0 is the fluctuation of the external field. It is straightforward to inverse it

−∆̂w(k) = ĝ−1
D (k2)φ̂(k) (52)

A Derivation of eq. (15)

At O(ε1), the expansion for p(x, s) is
p ∼ p(0) + εp(1) (A.1)

Inserting it into eq. (9), we have

∂

∂s

[
p(0) + εp(1)

]
= ∇2

[
p(0) + εp(1)

]
− εω

[
p(0) + εp(1)

]
(A.2)
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From the zeroth order expansion eq. (12), we know

∂p(0)

∂s
−∇2 p(0) = 0 (A.3)

It simplifies eq. (A.2) to
∂p(1)

∂s
= ∇2 p(1) −ωp(0) − εωp(1) (A.4)

As ε→ 0, the last term in the right-hand side of the above equation vanishes, leading to eq. (15).

B Derivation of eq. (18)

We know
p(0)(x, s) = 1 (B.1)

which is the trivial solution of zeroth order expansion. Therefore eq. (15) becomes

∂

∂s
p(1)(x, s) = ∇2 p(1)(x, s)−ω(x) (B.2)

Perform Fourier transforms on both sides of above equation, we reaches

∂

∂s
p̂(1)(k, s) = −k2 p̂(1)(k, s)− ω̂(k) (B.3)

Re-organize above equation into the form

d
[
k2 p̂(1) + ω̂

]
k2 p̂(1) + ω̂

= −k2ds (B.4)

It can be easily solved and the solution is

ln
[
k2 p̂(1) + ω̂

]
= −k2s + C (B.5)

Let s = 0, and with p̂(1)(k, 0) = 0 (because p(1)(x, 0) = 0), we then have

ln ω̂ = C (B.6)

or
ω̂ = eC (B.7)

Write eq. (B.5) with p̂(1) in the left-hand side and substitute above equation into it, we arrives at

p̂(1) = − 1
k2

(
1− e−k2s

)
ω̂ (B.8)

which is equivalent to eq. (18).

C Derivation of eq. (20)

At O(ε2), the expansion for p(x, s) is
p ∼ p(0) + εp(1) + ε2 p(2) (C.1)

Inserting it into eq. (9), we have

∂

∂s

[
p(0) + εp(1) + ε2 p(2)

]
= ∇2

[
p(0) + εp(1) + ε2 p(2)

]
− εω

[
p(0) + εp(1) + ε2 p(2)

]
(C.2)

Substitute eq. (12) and (15) into above equation and ignore terms with ε, it simplifies to eq. (20).
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D Derivation of eq. (22)

We copy eq. (20) here
∂p(2)(x, s)

∂s
= ∇2 p(2)(x, s)−ω(x)p(1)(x, s) (D.1)

Perform Fourier transforms on both sides of above equation, we arrives

∂ p̂(2)(k, s)
∂s

= −k2 p̂(2)(k, s)− ω̂p(1)(k, s) (D.2)

This is a general first order linear partial differential equation with respect to s

∂ p̂(2)

∂s
+ k2 p̂(2) = −ω̂p(1) (D.3)

The solution is

p̂(2) =
∫

ds u(s)[−ω̂p(1)] + C
u(s)

(D.4)

where C is a constant which can be obtained by applying the initial condition, and

u(s) = exp
(∫

ds k2
)
= ek2s (D.5)

From the first order solution, we can find

ω̂p(1) = ŵ ∗ p̂(1)

=
1
V ∑

k′
ŵ(k′) p̂(1)(k− k′)

(D.6)

Substituting eq. (18) into above equation, we have

ω̂p(1) = − 1
V ∑

k′
ĥ2(k− k′, s)ŵ(k− k′)ŵ(k′) (D.7)

To simplify the notation, we define
α ≡ k2 (D.8)

β ≡
∣∣k− k′

∣∣2 (D.9)

Substitute eq. (D.5) and (D.7) into eq. (D.4)

p̂(2) = e−αs

{∫
ds eαs

[
1
V ∑

k′

1
β
(1− e−βs)ŵ(k− k′)ŵ(k′)

]
+ C

}

= e−αs

{
1

Vβ ∑
k′

[∫
ds eαs(1− e−βs)

]
ŵ(k− k′)ŵ(k′) + C

}

= e−αs

{
1

Vβ ∑
k′

[
1
α

eαs − 1
α− β

e(α−β)s
]

ŵ(k− k′)ŵ(k′) + C

} (D.10)

Because p(2)(x, 0) = 0, thus p̂(2)(k, 0) = 0, therefore

0 = e−α0

{
1

Vβ ∑
k′

[
1
α

eα0 − 1
α− β

e(α−β)0
]

ŵ(k− k′)ŵ(k′) + C

}
(D.11)

Thus

C = − 1
Vβ ∑

k′

(
1
α
− 1

α− β

)
ŵ(k− k′)ŵ(k′) (D.12)

8



Substitute it back into previous equation,

p̂(2) = e−αs

{
1

Vβ ∑
k′

[
1
α

eαs − 1
α− β

e(α−β)s
]

ŵ(k− k′)ŵ(k′)− 1
Vβ ∑

k′

(
1
α
− 1

α− β

)
ŵ(k− k′)ŵ(k′)

}

=
1
V ∑

k′

[
e−αs

(
1
α

eαs − 1
α
− 1

α− β
e(α−β)s +

1
α− β

)
1
β

]
ŵ(k− k′)ŵ(k′)

(D.13)

We can define

ĥ3(k, k′, s) = e−αs
(

1
α

eαs − 1
α
− 1

α− β
e(α−β)s +

1
α− β

)
1
β

=
1
β

(
1
α
− 1

α
e−αs − 1

α− β
e−βs +

1
α− β

e−αs
)

=
1

αβ

[
1− e−αs − α

α− β

(
e−βs − e−αs

)] (D.14)

which completes the derivation.
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