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ABSTRACT: This study represents the first attempt to address the inverse
design problem of the guiding template for directed self-assembly (DSA) patterns
using solely machine learning methods. By formulating the problem as a multi-
label classification task, the study shows that it is possible to predict templates
without requiring any forward simulations. A series of neural network (NN)
models, ranging from the basic two-layer convolutional neural network (CNN) to
the large NN models (32-layer CNN with 8 residual blocks), have been trained
using simulated pattern samples generated by thousands of self-consistent field
theory (SCFT) calculations; a number of augmentation techniques, especially
suitable for predicting morphologies, have been also proposed to enhance the
performance of the NN model. The exact match accuracy of the model in
predicting the template of simulated patterns was significantly improved from
59.8% for the baseline model to 97.1% for the best model of this study. The best
model also demonstrates an excellent generalization ability in predicting the template for human-designed DSA patterns, while the
simplest baseline model is ineffective in this task.
KEYWORDS: block copolymer, directed self-assembly, machine learning, inverse design, lithography

■ INTRODUCTION
The self-assembly of block copolymers in the bulk phase can
form various intricate and ordered morphologies,1−4 which are
governed by various factors, including the Flory−Huggins
interaction parameter, degree of polymerization (N), and
volume fractions of blocks ( f). These diverse and beautiful
nanostructures or patterns offer various candidate substrate
geometries for manufacturing nanodevices,5,6 lithography,7−13

biomimetics, etc. However, a drawback of block copolymer
self-assembly in the bulk phase is its lack of designability,
which researchers can overcome by directing the self-assembly
(DSA) of block copolymers (BCPs). Compared to top-down
lithography methods, DSA employs lithographically defined
chemical or topological templates to guide the BCPs to self-
assembly into semiconductor-relevant features, such as line/
space or contact holes, at a relatively low cost.14−16 Currently,
DSA of BCPs has found applications in various semiconductor
device manufacturing processes, including fin field-effect
transistors (FinFETs), memory devices, and photonic
devices.17−19 To promote the application of DSA in high-
volume manufacturing, extensive research has been focused on
improving the quality of DSA patterns. This includes
investigating the mechanisms of defect formation and
accelerating their annihilation through experimental and
simulation approaches.20−27

Despite the usefulness of the DSA, its design efficiency
through trial and error methods alone is limited. To accelerate

the design process, researchers often employ computer
simulations, such as self-consistent field theory (SCFT),28−33

and machine learning techniques,34−39 such as random forest
method37 and convolutional neural network (CNN),40,41 to
search for the desired self-assembly structures of block
copolymers and to predict DSA patterns based on a given
template. Nevertheless, this forward design approach is still
relatively slow, particularly for complex patterns that may
require thousands of attempts to achieve the desired outcome.

The inverse design method,42 which involves inferring the
guiding template based on a given aiming pattern, offers a
more efficient solution. This is also a crucial step in actual
design procedures for various microelectronic and nano-
electronic devices. Several forward simulation methods have
been developed for the inverse design task. For instance,
Khaira et al.43 used a simulation−evolution method to design
templates for regular striped or lamellar DSA patterns, while
Hannon et al.44 tackled more complex patterns using Monte
Carlo optimization assisted by SCFT simulations, showing
good agreement with the experimental results.
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To further promote the design efficiency, this work solely
employs machine learning to perform the inverse design task
directly from a complex input pattern without any auxiliary
forward simulations. The designed chemical template features
a 5 × 5 adsorption square post array that guides the self-
assembly of A/B diblock copolymers. The template’s square
posts are either adsorptive to the A blocks (ON) or neutral to
both A and B blocks (OFF). From the perspective of
supervised model training, the status of the 25 template
posts can be described as 25 ON/OFF labels, and the inverse
design task can be modeled as a multi-label binary classification
problem, as shown in Figure 1. This problem is very

challenging for two reasons. First, the exact-match accuracy45

of this multi-label classification problem with random guesses
is only about 1/225, which is significantly lower than that of a
one-label classification problem, such as 10-class handwritten
digit recognition with the random-guess accuracy ∼1/10.
Second, as the mapping between the DSA pattern and the
template is normally many-to-one rather than one-to-one, it
may still take several attempts to obtain the desired DSA
pattern based on the predicted template. As a result, there has
been very little work done on performing inverse design solely
through machine learning. Only a few studies have used
machine learning methods to address DSA-related problems,
such as evaluating the quality of templates46−48 or analyzing
DSA pattern defects.27

Therefore, this work aims to develop an efficient and robust
deep-learning-based method for directly predicting templates
that can guide the self-assembly of BCPs into complex target
patterns (as shown in Figure 2). The data set used for model
training is generated through forward simulations. First,
random template post arrays are generated, with each square
post either ON or OFF, which serve as the sample labels.
Then, SCFT simulations are used to simulate the self-assembly
patterns formed on these templates, which serve as the sample
features. A number of deep-learning techniques, originally
developed for image recognition, will be specifically modified
to improve the accuracy of the inverse prediction of the
template. These techniques have been shown to significantly
enhance the accuracy of inverse prediction for simulated
directed self-assembly (DSA) pattern inputs. Even for human-
designed pattern inputs, containing essential lithography
structures such as dense or isolated lines and spots, angles,
jags, and T-junctions, the success rate is still acceptable with
the improved NN model, in contrast to the original NN
model’s extremely low success rate on this task.

The contributions of this work are summarized as follows:
(i) We present the first work to predict a DSA guiding

template using only machine learning methods without relying
on any forward simulations. It should be noted that SCFT
simulations are only used for data generation and accuracy
evaluation, as shown in Figure 2(a),(c). (ii) We propose
several deep-learning techniques, including the interface noise
adding augmentation (INAA) and multi-channel input strategy
(MCIS), adapted from the image recognition but are specially
suitable for DSA-pattern related problems. In particular, MCIS
can effectively address the many-to-one mapping problem
mentioned above. These techniques significantly improved the
prediction accuracy from ∼59.8% to ∼97.1%, which is a
remarkable improvement compared to the random-guess
accuracy of 1/225.

Figure 1. Inverse design for DSA patterns can be typically modeled as
a multi-label classification problem. This work aims at designing a
DSA pattern guided by a 5 × 5 post template, which corresponds to
the 25-label binary classification problem.

Figure 2. Flowchart for the inverse design of the guiding template for
DSA patterns using the single-channel input strategy (SCIS) is shown,
while that for the multi-channel input strategy (MCIS) can be found
in Figure S1. The process consists of three steps: (a) Data generation:
A data set is generated using SCFT simulations, where each sample
consists of a template y and the corresponding DSA pattern. The
ON/OFF-square-post template is randomly generated, and SCFT is
used to simulate the DSA process on the template. The resulting
template and DSA pattern are then converted into 5 × 5 and 40 × 40
binary arrays, respectively. Around 90,000 samples are generated in
this manner. (b) Model training: The data set is used to train an NN
model to learn how to accurately predict the correct template for a
given input pattern. (c) Inverse Design: The trained NN model is
asked to predict a template based on a human-designed pattern. One
of the DSA patterns that forms on the predicted template is expected
to recover the designed pattern. This can be tested by conducting
experiments or using SCFT simulations.
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■ METHODS
Self-Consistent Field Theory and Data Generation. The

neural network (NN) in this work was trained under supervised
learning using a preobtained data set generated through forward self-
consistent field theory (SCFT)2,3 simulations (see Figure 2a). To
generate the data set, a chemical template featuring a 5 × 5 square
posts array was designed. Each post in the array was either adsorptive
or neutral to one block (A block) of the equal-armed A/B diblock
copolymer (BCP). The post size of the template was slightly larger
than half of the characteristic period of the BCP to produce a more
refined pattern from a coarse template. Approximately 90,000 ON/
OFF-post array templates with a size of 5 × 5 were randomly
generated, and the target patterns were produced by 2D SCFT
simulations with a periodic boundary condition in the x−y plane.
Obviously, the simulation box in this work is symmetric along the z-
direction, where the generated DSA patterns will exhibit higher
fidelity and better designability compared to those of DSA using the
free surface fields.

The SCFT simulations in this work use the same equations and
numerical schemes as those presented in refs 2 and 3. The model
setup for the SCFT simulations is as follows: the total chain length of
the block copolymer is set to 80 with a Kuhn length of b = 1, and χN
= 20 with χ being the Flory−Huggins parameter and N being the
chain length. The attractive potential of the template on the A block is
expressed as εδA(r), where ε = 1.6kBT and δA(r) = 1 for r inside the
square post adsorptive to A, while δA(r) = 0 otherwise (see Figure
S10). The potential exerted on the B block by the template is set to
zero for all r. A forward SCFT calculation begins with a pair of
random initialized fields ωA(r) and ωB(r) and undergoes a sufficient
number of iterations until the fields are self-consistent or the free
energy of the assembly reaches its local minimum.

Due to the stochastic nature of SCFT, even for a given template,
different initial random fields can result in different assembly BCP
patterns, which correspond to different metastable patterns observed
in experiments. Therefore, in the real forward SCFT simulations,
about 20 random initial fields are typically tried, and the patterns with
the minimum free energy are added to the data set. It is important to
note the following: (i) There is no algorithm to guarantee that the
BCP pattern generated by the SCFT is the global minimum in free
energy.2 (ii) The many-to-one (many patterns to one template)
mapping problem can increase the complexity of the prediction work
and reduce the prediction accuracy. (iii) The defects23−27 arising from
the periodic boundary conditions of the simulated box and the
incommensurability between the box dimensions and those of the
microphase-separated domains would significantly complicate the
prediction task (also see Figure S11). Fortunately, this problem can
be addressed in the following context through the implementation of
a multiple-channel input method.

Both the templates and aiming patterns are transformed into two-
dimensional binary arrays, where 0 and 1 represent the neutral (OFF)
and adsorptive (ON) square posts for the template, respectively, and
for the aiming pattern, they represent A and B microdomains,
respectively. The binary pattern array x is of 40 × 40 in shape, which
describes the same sized physical space as the 5 × 5 template array y.

In this work, two different input strategies will be employed in the
NN model building, and accordingly two different data sets are
generated using SCFT calculations. In the single-channel input
strategy (SCIS), only one DSA pattern obtained from SCFT is input
into the NN model and each sample of the data set for SCIS consists
of one randomly generated template and one corresponding DSA
pattern (Figure 2); while each sample of the data set for multi-channel
input strategy (MCIS) consists of a randomly generated template and
five corresponding DSA patterns (Figure S1). Each data set (90,000
samples) will be further divided into three distinct groups: training
data set (80,000 samples), validation data set (2,220 samples), and
test data set (3,448 samples). These data sets are mutually exclusive,
meaning that no template in one data set can be transformed into a
template in another data set through data augmentation operations.
To ensure the independence between the validation and test data sets

and the training data set, over 4,000 samples from the remaining
10,000 samples have been excluded.

Machine Learning and Inverse Design. In contrast to forward
simulations, the neural network (NN) in the inverse design takes the
BCP pattern x as input and the template y as the output. It is
worthwhile to note that the output array is converted to one
dimension, while the input array is retained in its two-dimensional
form to preserve two-dimensional physical information. This makes
the task analogous to multi-label classification in image recognition,
i.e., to predict 25 labels based on a 40 × 40 image (see Figure 1).

Also note that in this work, the input can be either single-channel
(Figure 2) or multi-channel (Figure S1). In the single-channel NN,
the input comprises only one of the BCP patterns formed on the
given template. Conversely, in the multichannel NN, we input five
patterns formed on the given template into the NN.

During the training process (Figure 2(b)), layer parameters are
initially generated using the default initialization method of
tensorflow2.0 and progressively optimized during training. The
model adjusts all the parameters to minimize the value of a loss
function that quantifies the degree of deviation between the predicted
and the true values. In this multi-label classification problem, we use
binary cross entropy (BCE) as the loss function,49 which computes
the average cross entropy for each label. The value of BCE is
calculated using the following equation:

[ ] = [ + ]
=

L f x
m

y f x y f x( )
1

log ( ) (1 ) log(1 ( ))i
i

m

i i i i
1 (1)

where x is the input array, m is the label number (m = 25), i ∈ [1, m]
represents the ith label, yi equals 0 or 1 representing the ith true label,
and f i(x) ∈ [0, 1] represents the ith predicted label by the NN. The
Adam optimization method,49 based on the gradient descent
algorithm, is used to optimize the BCE loss during the training
process. In each epoch, the model processes all the training data set
samples, on average. The model is trained on the training data set for
a specified number of epochs, where a validation-based early stopping
strategy49 will be applied to prevent overfitting (see Figure S5).

After the training process, the NN can be applied to the test
samples generated by SCFT simulations or to the inverse design of
human-designed patterns (Figure 2(c)).

In the application of the trained NN on test samples, the prediction
accuracy is evaluated by directly comparing the template predicted by
NN and the true template obtained by SCFT simulations (see Figure
2(c) and eqs 2 and 3).

In the inverse design or the application of the trained NN on hand-
designed patterns, there is no true template to evaluate the success of
the inverse design. Thus, we used the predicted template to perform a
series of SCFT simulations or experiments to examine whether they
can produce one or more patterns that closely resemble the human-
designed pattern. We define the success rate of the inverse design as
the percentage of human-designed patterns that are correctly
reproduced by the SCFT simulations based on the predicted template
given by the NN.

Neural-Network Architectures. In this work, several neural
network architectures have been employed. These architectures
consist of building blocks of dense layers, CNN layers,49 residual
blocks (ResNet),50 and a self-conscious neural network (SCN)
module (Figure S2). CNN layers are commonly used in object
recognition and are particularly effective at extracting features from
2D structural data. ResNet was originally developed to address the
vanishing gradient problem and has been widely used in various fields.
The fundamental concept behind the SCN module is to utilize the
NN’s inner state to enhance its performance (see section II in SI for
more details).

In this study, we investigated a total of 32 neural networks. Four
CNN networks were examined, namely CNN2, CNN8, CNN24, and
CNN32, where CNNn refers to a deep CNN with n layers.
Additionally, four residual neural networks were explored, namely,
CNN24-Res12, CNN32-Res8, CNN32-Res12, and CNN32-Res16, where
CNNn-Resm denotes a ResNet with n CNN layers and m residual
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blocks (refer to Table S2 for more details). Furthermore, we
introduced the SCN module into these eight neural networks, forming
an additional eight NNs, which we denote as CNNn-Resm-SCN. We
also considered two different types of NN inputs, namely, single-
channel and multichannel input. We labeled the multichannel input
NN with an added “M-” in front of the name. For example, M-CNNn-
Resm is a multichannel Resnet.

In the following context, we shall use the notation X-CNNn-Resm-
SCNY to refer to the 32 NNs explored in this work, where X can be
either M (multi-channel) or S (single-channel), n represents the
number of CNN layers employed, m represents the number of
residual blocks employed, and Y can be either ON (with SCN
module) or OFF (without SCN module). For a more detailed
description of these NN structures, please refer to Tables S1 and S2.

Data-Augmentation Techniques. In this work, we employed
four data augmentation techniques to enhance the performance of
NNs: rotation and reflection (R&R), pattern broadening (PB),
random window moving (WM), and interface noise-adding
augmentation (INAA).

The R&R technique applies rotation and mirror-reflection
operations to the original images to increase the number of samples
in the training data set. Specifically, eight additional samples are
generated for each original image.

The PB augmentation technique broadens the vision of NNs by
increasing the size of the pattern from 40 × 40 to 48 × 48 (Figure
S3), which injects more information into NNs to obtain better
predictions.

The WM augmentation technique is adapted from random-crop
augmentation in object recognition. Since the DSA patterns generated
in our work have periodic boundary conditions, nine copies of the
original pattern can be tiled to form a larger pattern (120 × 120), and
a 40 × 40 (or 48 × 48) window is randomly moved with steps
compatible with the square-post size of the template to crop the new
pattern (see Figure S4).

For the INAA augmentation technique, we designed a strategy that
specifically targets the inverse-design problem of DSA patterns and is
suitable for other problems that involve predictions related to phase-
separated patterns. The core idea is that NNs should ignore slight
changes in the interfaces of different phase domains. However,
randomly adding noise can create new small phase domains that do
not improve prediction accuracy (Figure 3, left). Therefore, instead of
adding random noise, we flip the colors only on the boundary
between phase domains to maintain the original domain structure
(see Figure 3).

■ RESULTS AND DISCUSSION
Evaluation Metrics. To evaluate the performance of our

trained NNs, we counted the number of test samples (denoted
as mt(NON/OFF)) for which the number of correctly predicted
ON/OFF template blocks is exactly NON/OFF (see Figure 4 and
Figure S6). For example, when NON/OFF = 25, this indicates
that the predicted template is fully correct. Using mt(NON/OFF),
we calculate the exact match (EM) accuracy45 and overall
precision in multi-label classification as follows:

=A
m

M
(25)t

EM (2)

=
·=P

i m i

M

( )

25
i t1
25

(3)

where M = 3448 represents the total number of test samples in
this work. The EM accuracy metric considers only fully
corrected predicted templates and is considered to be harsh,
while the overall precision metric considers partially correct
predictions. For instance, the EM accuracy for the baseline
model is 2061/3448 ≈ 59.8% (see the green bars in Figure
S6(a)), while its overall precision is much higher ((2061 × 25
+ 1007 × 24 + ...)/3448/25 ≈ 97.9%). However, the poor
performance of the baseline model indicates that the overall
precision of the model can be misleading in this case.
Therefore, we primarily rely on EM accuracy to evaluate
models in the following context.

Poor Performance of the Baseline CNN Model. As
mentioned in the introduction, the task of inverse design for
DSA patterns can be reduced to a multi-label classification
problem. However, predicting all of the labels (ON/OFF
template posts) on the template correctly is extremely
challenging, as there are 225 possible template configurations.
In fact, with random guesses, the accuracy is only 1/225 ≈ 2.3
× 10−8, which is much lower than the accuracy of 1/10 for the
10-class classification problem of handwritten digit recognition.

The poor performance of the baseline CNN model (S-
CNN2-Res0-SCNOFF) on this problem confirms the above
analysis. The baseline model (see column (a) in Table S1) has
only one single-channel input layer, two CNN layers, and two
dense layers. It achieves an EM accuracy of only about 59.8%
on the test data set (see the first row in Table 1.; also see
Figure S6(a) for other NON/OFF results), which makes it almost
useless for the inverse design task of human-designed patterns
(Figures 5 and S7).

Impact of Data-Augmentation Techniques on NN
Performance. The baseline model trained by the original
training data set achieves an EM accuracy of only 0.598 on the
test data set. However, the performance can be significantly
improved by applying data augmentation techniques, as
discussed in the “Data-Augmentation Techniques” section.

By applying rotation (90, 180, 270, and 360°) and mirror-
reflection (R&R) operations to the original training data set, a
new data set is generated that is 8 times larger. This leads to an
improvement in the prediction accuracy to 0.639. The pattern
broadening (PB) technique, which utilizes the periodic
boundary condition in the SCFT data generation process to
add extra boundary information to the input pattern, further
improves the prediction accuracy to 0.667. Moreover, by using
the window movement method, which exploits the periodic
boundary condition to effectively increase the size of the
training set by 6-fold, the prediction accuracy is significantly
enhanced to 0.722 (Table 1). It is also worth noting that the
baseline model with data augmentation techniques converges
much faster than the original baseline model, as evidenced by
the decrease in the early stopping epoch shown in Table 1.

Impact of NN Architecture on Model Performance. In
Table S1, we progressively deepened the baseline CNN model
with 2 CNN layers to a 32-CNN-layer model, and introduced
interlayer structures, including SCN (Figure S2) and residual
structure50 (Table S2), to facilitate data integration and cross-
layer data transmission in a deep CNN architechture.

The SCN, which contains a self-consistent loop,51,52 acts as a
fine-tuning mechanism for the variables in the dense layers of

Figure 3. DSA patterns in the training data set after traditional noise
adding augmentation (left) and interface noise adding augmentation
INAA (right).

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.3c05018
ACS Appl. Mater. Interfaces 2023, 15, 31049−31056

31052

https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsami.3c05018/suppl_file/am3c05018_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsami.3c05018?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c05018?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c05018?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c05018?fig=fig3&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.3c05018?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


the CNN, leading to a significant improvement in prediction
accuracy to approximately 0.781 (as shown in Table 2).

Furthermore, the inclusion of the residual structure in the
model helped to alleviate the vanishing gradient problem that
may arise when the model is deepened beyond 24 CNN layers.
Consequently, the 32-CNN-layer model achieved a maximum
accuracy of 0.870, beyond which there is no significant
improvement in prediction accuracy (as demonstrated in Table
2).

The Role of Multichannel Input Strategy. Using the
multichannel input strategy (Figure S1), the best performing
model (M-CNN32-RES8-SCNON) in this work achieves an EM
accuracy of 0.971 and an overall precision of 0.999 (as shown
in Table 2). This result indicates that five channels are

Figure 4. Performance of ten typical NNs on the test data set (3448 samples). The metric used is the number of correctly predicted ON/OFF
posts (NON/OFF) of the 25 total 25 ON/OFF posts in the template. mt(NON/OFF) is the number of test samples with a correct prediction of NON/OFF
posts (eqs 2 and 3). For example, the green bars correspond to the model S-CNN2-Res0-SCNOFF, which correctly predicted all 25 ON/OFF blocks
for 2526 test samples, while partially correct predictions (24/25) were obtained for 774 test samples. The naming conventions for the NNs are
described in the inset of Table 2.

Table 1. Exact Match Accuracy (EM Acc.) and the Overall
Precision (Prec.) of the Baseline Model on the Test Dataset
without (First Row) or with the Listed Data Augmentation
Techniquesa

augmentations EM Acc. Prec. ES Epoch

59.8% 97.9% 236
R&R 64.0% 98.2% 52
R&R + PB 68.2% 98.4% 46
R&R + PB + WM 73.3% 98.7% 21

aObtained at the corresponding early-stopping (ES) epoch. The ES
epoch is determined by the validation accuracy curves(see Figure S2).
R&R: rotation and reflection; PB: pattern broadening; WM: window
movement (also see Figures S3 and S4). See Figure S6(b) for other
NON/OFF results.

Figure 5. Illustrative example of human-designed pattern recognition. A pattern is hand-drawn and converted to a 40 × 40 binary array, which is
then input to the trained NN. The NN predicts a 5 × 5 possible template. DSA simulation is then conducted by SCFT under different initial
conditions. The multi-channel-input best model with INAA (third row) successfully guides the self-assembly of the BCP to form DSA patterns
(highlighted by green boxes) similar to the design sketch, while the best model without INAA fails in this task. The baseline model (S-CNN2-Res0-
SCNOFF, first row) performs the worst, with simulated patterns that are completely different from the desired pattern. NN model names are
described in the footnote of Table 2.

Table 2. Exact Match Accuracy (EM Acc.) and the Overall
Precision (Prec.) of Six Typical NNs on the Test Dataset at
Their Corresponding Early-Stopping (ES) Epocha

NN model EM Acc. Prec. ES Epoch

S-CNN2-RES0-SCNON 78.1% 99.0% 20
S-CNN8-RES0-SCNON 84.9% 99.3% 19
S-CNN24-RES12-SCNON 86.5% 99.4% 17
S-CNN32-RES8-SCNON 87.0% 99.4% 16
M-CNN32-RES8-SCNON 97.1% 99.9% 8
M-CNN32-RES8-SCNON

b 95.5% 99.8% 13
aDetermined by the validation accuracy curves shown in Figure S2.
The models are named according to the following rules: X-CNNn-
Resm-SCNY (see the “Neural-Network Architectures” section and
Table S2), where X denotes M (multi-channel) or S (single-channel),
n denotes the number of CNN layers used, m denotes the number of
residual blocks used, and Y denotes ON (with SCN module) or OFF
(without SCN module). bThe model in the sixth row includes INAA.
See Figure S6(c),(d) for other NON/OFF results.
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adequate for capturing most of the possible patterns that can
be generated from a single template.

However, it is noteworthy that the EM accuracy drops to
approximately 0.769 (also observed in the models with star
symbols in Figure S6(d)) when all five input channels contain
duplicates of a single pattern.

Human-Designed Pattern Recognition and Inverse
Design. Although our best model achieves high EM accuracy
(97.1%) for predicting the guiding templates based on the test
DSA patterns obtained by SCFT simulations, in real-world
inverse design, the input DSA patterns are normally designed
by engineers rather than by SCFT. The phase interface of these
human-designed (HD) patterns often differs from that of DSA
patterns obtained by SCFT, which may pose challenges for the
NN model trained solely on SCFT data. Therefore, a useful
NN model for inverse design in lithography should first be
evaluated by using HD patterns.

As shown in Figure 5, we begin by designing a DSA pattern
either manually or using computer drawing tools, provided that
the HD pattern has a higher resolution than the template
(Figure S9). Next, this HD pattern is input to the NN model
to obtain the predicted template (for the multi-channel NN
model, five copies of the same HD pattern are used as input).
Unlike when using SCFT-simulated patterns where the “true”
templates are provided to evaluate the model, there is no “true”
template in this task. Hence, experiments or SCFT simulations
are carried out based on the predicted template to determine
whether the microphase separation of block copolymers guided
by the predicted template will indeed yield the desired DSA
pattern. In this work, we employ SCFT simulations to generate
several DSA patterns under different initial fields, guided by
the predicted template; if one of these patterns is similar to the
desired pattern, the inverse design task of this HD pattern is
deemed successful.

Our findings indicate that our best model M-CNN32-RES8-
SCNON with INAA (Bestinaa model) performs best in this
task, successfully reproducing approximately half of the HD
patterns, whereas only a few HD patterns could be reproduced
by our best model without INAA, and the baseline model is
the least effective, generating templates that differ significantly
from those of the Bestinaa model (see Figures S7 and S8).

However, although the Bestinaa model can accomplish half
of the inverse design tasks of HD patterns, it is still not entirely
satisfactory. The unsatisfactory results can be attributed to two
main reasons. First, the periodic boundary conditions used for
generating the DSA patterns during the model training and
SCFT simulations, while convenient, can limit the inverse
design of HD patterns. Second, some HD patterns may be
unsolvable for inverse design, implying that there may be no 5
× 5 template capable of inducing the desired pattern. We are
currently uncertain whether the DSA patterns in Figure S8
failed due to this unsolvability.

Analysis of INAA’s Performance. The improved robust-
ness of the model after applying the noise operation INAA to
the training data set is illustrated in Figure 6. In this example,
the pattern of the sample gradually changes with a small
number of pixels from the left to right. The model without
noise operation produces different templates, whereas the
model trained with INAA consistently outputs the correct
template. This indicates that INAA can effectively enhance the
model’s ability to generalize to variations in the input data.

Here, we highlight the differential performance of INAA
when predicting templates for SCFT-calculated patterns versus

human-designed (HD) patterns. The “roughness” of the
interfaces of the DSA pattern is inherently determined given
a specific model setting. Consequently, it is not necessary to
use INAA to promote the model’s performance in predicting
the template for the SCFT-obtained patterns. Interestingly,
results in Table 2 indicate that the utilization of INAA may
even slightly impair the model’s performance in this case. In
contrast, for human-designed patterns, the interface is
ordinarily smoother than that of SCFT-obtained patterns.
We should preclude the model from exploiting “roughness”
information in its predictions in this case, which is exactly what
INAA was designed to address.

It is worth noting that INAA is closely related to one of the
problems in the real DSA, the line edge roughness
(LER),24,53−56 since both involve changing the roughness of
the interface. We can utilize the machine-learning methods
developed in this work to extract the relationship between
various factors, such as the pattern dimensions, the Flory−
Huggins parameter, or the polydispersity index of BCP and
LER, thereby identifying a suitable approach to minimize LER.
Alternatively, reinforcement learning (RL) could also be
harnessed to lessen LER.

■ CONCLUSIONS
This work undertakes the first effort to tackle the inverse
design challenge of the guiding template for directed self-
assembly (DSA) patterns using machine learning methods. By
presenting the problem as a multi-label classification task, the
study proves that templates can be predicted without the need
for any forward simulations. The proposed techniques draw
inspiration from image recognition but are tailored to predict
phase-morphology-related problems, incorporating several data
augmentation methods and model construction rules. A
notable addition is the interface noise adding augmentation
(INAA) method, which is extremely effective in pattern and
template morphology prediction. Using these techniques and
rules, the initially poor-performing baseline CNN model is
gradually refined, resulting in the best model that incorporates
the residual network and introspection mechanisms. The best
model achieves an exact match accuracy improvement of
nearly 40% up to 97.6%. Notably, even in the challenging and
practical task of human-designed pattern recognition, the best
model combined with INAA achieves a success rate of

Figure 6. Effect of INAA on pattern recognition robustness. The right
panel shows a sequence of gradually modified patterns (highlighted by
black circles on the phase interface) and the corresponding templates
predicted by the model S-CNN32-RES8-SCNON trained with and
without INAA. The model trained with INAA (bottom row)
consistently produces the correct template, while the model without
INAA (center row) produces different templates as the pattern is
modified. The original pattern and template from the data set are
displayed on the left.
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approximately 50%, while the baseline model proves to be
almost useless for this task.

However, there are still some limitations to this model. First,
the periodic boundary conditions used in pattern generation
restrict its applicability and extension. Second, the DSA pattern
size used in this work is relatively small, and there are still too
many defects in the calculated pattern (Figure S11). In our
future work, we aim to explore alternative boundary
conditions, increase the pattern size, focus on machine learning
aided defect annihilation, and examine nonlamellar patterns.
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