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Abstract  Self-consistent field theory (SCFT), as a state-of-the-art technique for studying the self-assembly of block copolymers, is 
attracting continuous efforts to improve its accuracy and efficiency. Here we present a fourth-order exponential time differencing 
Runge-Kutta algorithm (ETDRK4) to solve the modified diffusion equation (MDE) which is the most time-consuming part of a SCFT 
calculation. By making a careful comparison with currently most efficient and popular algorithms, we demonstrate that the ETDRK4 
algorithm significantly reduces the number of chain contour steps in solving the MDE, resulting in a boost of the overall computation 
efficiency, while it shares the same spatial accuracy with other algorithms. In addition, to demonstrate the power of our ETDRK4 algorithm, 
we apply it to compute the phase boundaries of the bicontinuous gyroid phase in the strong segregation regime and to verify the existence of 
the triple point of the O70 phase, the lamellar phase and the cylindrical phase. 
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INTRODUCTION  

The main idea of the polymer self-consistent field theory 
(SCFT) originated from the work of Edwards[1] on the size of 
polymers with excluded volume in the middle of 1960s, 
which was extended by de Gennes[2], Helfand[3], and Hong 
and Noolandi[4] to the study of inhomogeneous polymers. In 
recent years, perhaps the most prominent application of the 
SCFT theory is to study the self-assembly of block 
copolymers with various topological structures and 
characteristic properties[5−12]. In general, it is impossible to 
find analytical solutions for the set of SCFT equations. 
Therefore, either numerical or analytical approximation 
approaches are required to solve the SCFT equations. 
Analytical approximation methods, such as the random phase 
approximation (RPA)[13] and the strong stretching theory 
(SST)[14] , only cover a limited range of parameter space due 
to the introduction of further approximations in addition to 
the mean field approximation. However, to examine the 
density distribution of each component and to address the 
stability of several competing complex microstructures such 
as the bicontinuous double gyroid phase (G) and the ordered 
bicontinuous double diamond (OBDD) phase[15], usually 
requires the solution of the SCFT model where numerical 
methods play a central role. 

With a given updating scheme in a typical numerical SCFT 

calculation, the most time-consuming procedure is to evaluate 
the propagators from the modified diffusion equations 
(MDE)[5]. The propagator describes the probability to find a 
segment in a polymer chain with contour length s  situated at 
r , which is essential for calculating the density operator and 
the single chain partition function. In 1994, Matsen and 
Schick[15] made a major progress in solving SCFT equations 
efficiently by developing a spectral method. In particular, 
they expanded the spatial dependence of the unknown 
functions into a complete set of smooth basis functions, and 
transferred the calculation from real space into Fourier space. 
This method works well in evaluating the free energy of 
presumed phase structures thus allowed them to construct a 
complete phase diagram of diblock copolymers for the first 
time. However, the spectral method has an important 
limitation that it relies on knowing phase structures in 
advance in order to take advantage of their symmetries to 
reduce the computational cost. On the other hand, Drolet and 
Fredrickson[16] proposed a combinatorial screening strategy 
for exploring new structures of block copolymers by solving 
SCFT equations in real space. The real-space technique 
enables one to search for unknown structures by initializing 
simulations with random field/density configurations. Later, 
Rasmussen and Kalosakas[17] developed a pseudo-spectral 
method based on an operator-splitting scheme (OS2), which 
greatly improves the efficiency of the real-space SCFT 
calculation. After that the OS2 method has been widely 
accepted as the method of choice for real-space SCFT 
calculations. 



 J.Q. Song et al. / Chinese J. Polym. Sci. 2018, 36, 488−496 489 

https://doi.org/10.1007/s10118-018-2037-7 
 

As a second order time-stepping algorithm, the OS2 
method leaves room for further improvement. Cochran, 
Garcia-Cervera and Fredrickson[18] proposed a fourth-order 
pseudo-spectral algorithm (CGF4) based on a backward 
differentiation formula for Laplacian operator and an 
Adams-Bashford formula for the source term to overcome the 
difficulty in calculations of the gyroid structure in 
intermediate-to-strong segregation regime. With this 
algorithm, they determined phase boundaries that enclose the 
gyroid at χN up to 100. Another 4th-order algorithm (RQM4) 
was developed by Ranjan, Qin and Morse[19] by simply 
applying Richardson extrapolation on the OS2 algorithm. The 
authors claimed that this algorithm is more efficient than the 
spectral method at a large number of plane waves for 
calculation of linear response functions. In contrast to the 
CGF4 method, the RQM4 method does not need a second 
algorithm to start it up. Apart from these fourth-order 
pseudo-spectral algorithms, Tong et al.[20] developed an 
efficient real-space algorithm based on the multigrid method. 

Recently, Stasiak and Matsen have systematically 
benchmarked the performance of various pseudo-spectral 
algorithms[21]. By directly comparing the computation time 
for reaching a certain accuracy of the free energy of the 
gyroid and the spherical phases, they concluded that the OS2 
algorithm is far less efficient than the two fourth order 
algorithms, i.e. the CGF4 and RQM4 algorithms, while the 
RQM4 algorithm is the most efficient one among them. 
Although all these three algorithms have the same 
computational complexity, they demand very different 
computation time to achieve the same accuracy for free 
energy calculations. Thus, the authors suggested that it is 
necessary to benchmark different competing algorithms 
rather than simply relying on their computational complexity 
to determine the actual performance they deliver. They also 
noticed that a proper selection of spatial and contour 
resolution, which balances the numerical inaccuracies, is 
critical to obtain optimum performance. 

Here we present an alternative fourth-order algorithm 
based on an exponential time difference scheme (ETDRK4) 
to solve the MDEs. Following the suggestion of Stasiak and 
Matsen, we have performed a comprehensive benchmark 
among the OS2, RQM4 and the ETDRK4 algorithms, which 
shows our newly developed ETDRK4 algorithm is superior to 
the other two algorithms. The efficiency of the ETDRK4 
algorithm is further demonstrated by applying it to compute 
several time-demanding complex structures: the O70 phase 
and the strong segregated bicontinuous gyroid phase. 

NUMERICAL METHOD  

Self-consistent Field Theory 
The SCFT formulation of block copolymer melts is well 
established in the literature[5, 6], thus here we only list essential 
equations which are critical to introduce our numerical 
algorithms. Interesting readers are referred to the literature for 
more details. 

We model n diblock copolymer chains composed of 
chemically incompatible components A and B in a volume V 
under the incompressible condition. The number of segments 

in a diblock copolymer chain is N and the volume fraction of 
A block is f. We assume A and B segments have the same 
length b and the same volume v0. Thus, the density of the 
system is 1

0 0vρ −= . The Flory-Huggins interaction parameter 
between A and B segments is χ. In canonical ensemble, the 
mean-field free energy (in unit of kBT) is given by 

 [ ]A B A B

1
/ d  ( ) ( ) ln ,( ) ( )F CV N Q

V
χ φ φ ω ω= − − r r r r r  (1) 

where 3
0 g /C R Nρ=  with g / 6R b N=  being the radius 

of gyration of the diblock copolymer chain. Note that the 
spatial coordinate r is rescaled by Rg. The local density fields 
φA(r) and φB(r) and the auxiliary fields ωA(r) and ωB(r) at the 
saddle point are obtained by solving the following nonlinear 
equations in a self-consistent manner 

 A B A B( 1)N N Nω χ φ ξ φ φ= + + −  (2a) 

 B A A B( 1)N N Nω χ φ ξ φ φ= + + −  (2b) 

 *
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The auxiliary field ξ(r) ensures the incompressible condition. 
The propagator q(r, s) describes the probability of finding a 
segment indexed by s at position r by propagating from the 
free end of A block. This propagator is the solution of the 
following modified diffusion equation (MDE)  

 2( , )
 

q s q q
s

ω∂ = ∇ −
∂
r

 (3) 

subject to the initial condition q(r, 0) = 1 and ω = ωA(r) for 
s∈[0, f] and ω = ωB(r) for s∈[f, 1]. The backward propagator, 
q*(r, s), initiated from the free end of B block also satisfies   
Eq. (3) subject to the initial condition q*(r, 0) = 1 and ω = ωB(r) 
for s∈[0, 1 − f] and ω = ωA(r) for s∈[1 − f, 1]. The solution of 
the MDEs costs most of the computation time per SCFT 
iteration. It is critical to develop highly efficient algorithms 
for solving MDEs to improve the overall efficiency of the 
SCFT calculation. Below we describe our newly developed 
ETDRK4 algorithm as well as other two existing algorithms 
for solving Eq. (3). The single chain partition function Q in 
Eq. (1) can be evaluated as follows when the propagator is 
known 

 [ ]A B

1
 ( ), ( ) d  ( , 1)Q q s

V
ω ω = =r r r r  (4) 

The integrals in Eqs. (1) and (4) are evaluated using a 
trapezoidal rule, which gives exponential accuracy because 
the integrands are periodic functions. The integrals in Eqs. (2c) 
and (2d) are evaluated using a Simpson’s rule, which ensures 
the order of accuracy to be consistent with the ETDRK4 and 
RQM4 algorithms. 

The ETDRK4 Algorithm 
Recently, Liu and Zhang[22] developed a fourth-order 
exponential time differencing algorithm with Chebyshev 
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collocation for solving SCFT equations of polymer brushes 
and confined polymers involving non-periodic boundary 
conditions. In this paper, we extend their work by modifying 
their ETDRK4 algorithm to accommodate periodic boundary 
conditions. Consequently, the modified ETDRK4 algorithm 
can be applied to bulk systems. 

The original ETDRK4 algorithm was proposed by Cox and 
Matthews[23] and then improved by Kassam and Trefethen[24] 
to solve stiff nonlinear partial differential equations. First, we 
write the MDE in the following form 

 ( , )
q q q s
s

∂ = +
∂

   (5) 

where  = ∇2 and (q, s) = −ω(r)q. A system of ordinary 
differential equations (ODEs) is then obtained by discretizing 
the spatial part of the MDE with L and F being the matrix 
representations for  and . The ODEs are solved by an 
exponential time difference (ETD) scheme which integrates 
over a single contour step from s = sn to s = sn+1 + Δs, 

 
0

Δ

1 ( ) e ( ) e d  e ( ( ), )
ss s

n n n nq s q s q s sττ τ τΔ Δ
+ = + + +L L L F  (6) 

In general, the integral in the above equation must be 
approximated to obtain the final algorithm. In this study, we 
adopt the fourth-order Runge-Kutta (RK) time stepping 
scheme proposed by Krogstad[25]. The set of equations for the 
scheme is listed below 
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 2 3( ) 2 ( ( )) 4 [ ( ) ( )]n n ns s a s s a bϕ ϕ+ Δ Δ − Δ Δ +L F L F F  (7d) 

The coefficients in above equations are defined as ϕl+1(z) = 
[ϕl(z) − 1/l!]/z with l = 0, 1, 2 and ϕ0(z) = exp(z). It should be 
noted that serious cancellation errors emerge when one tries 
to evaluate the coefficients directly. Similar to the approach 
described in detail in Ref. [21], we employ the technique 
based on complex contour integral proposed by Kassam and 
Trefethen[24] to circumvent this difficulty.  

For periodic boundary condition problems, the matrix L 
can be diagonalized by transforming the MDE into the 
Fourier space, which greatly simplifies the calculation. After 
the Fourier transformation, the matrix L reduces to −Rgk2I, 
and F(q) = −ωq 

︿
(k)I, where I is an identity matrix, k is a wave 

vector in Fourier space, and ωq 
︿

(k) denotes the Fourier 
transform of the function ω(r)q(r). Note that ωq 

︿
(k) should be 

transformed back to real space to evaluate the nonlinear term 
after each time stepping. 

The OS2 Algorithm 
Rasmussen and Kalosakas[17] adopted an operator splitting 
method to separate the MDE into a diffusive term and a 
potential term[5, 17, 19]  

 ( , Δ ) exp[ Δ / 2]exp[ Δ ]W Dq s s s s+ =r    

 3exp[ Δ / 2] ( , ) (Δ )W s q s O s+r  (8) 

where D = ∇2 and W = −w(r). This approach results in a 
second-order accurate algorithm. The operation counts for 
executing this algorithm for a single contour step Δs is 
O(Mlog2M) with M the total number of collocation points (i.e. 
number of plane waves). By repeating the procedure along the 
chain contour, the solution of the diffusion equation requires 
O(NsMlog2M) with Ns = Δs−1 being the total number of 
contour steps. 

The RQM4 Algorithm 
The RQM4 algorithm was developed by simply carrying out a 
Richardson extrapolation on the OS2 algorithm[19]. 
Propagators qΔs(r, s) and qΔs/2(r, s) are first obtained by 
solving the MDE using the OS2 algorithm with contour steps 
of Δs and Δs/2, respectively. Then they are combined in the 
following way to give the final solution of the propagator 

 Δ / 2 Δ(( , ) [4 , , ] /) 3( )s sq s q s q s= −r r r  (9) 

This algorithm possesses a fourth-order accuracy for contour 
stepping owing to the fact that the errors of qΔs(r, s) and   
qΔs/2(r, s) cancel out exactly to the fourth-order. 

RESULTS AND DISCUSSION 

Performance of the ETDRK4 Algorithm 
Convergence in Ns 
In this part, we investigate the performance of the ETDRK4 
algorithm and compare it with the OS2 algorithm[17] and the 
RQM4 algorithm[19]. In particular, the dependence of the 
accuracy of the SCFT calculation on the number of contour 
steps Ns, which defines the contour resolution, has been 
examined. For all benchmark runs, we choose a diblock 
copolymer melt with the volume fraction of A block f = 0.375 
at χN = 18. Such a melt is known to form a bicontinuous 
gyroid structure[15, 26]. All simulations are performed in a 
cubic unit cell with a stress-free cell size and are initialized by 
a gyroid structure obtained from a SCFT calculation of a 
diblock copolymer melt of f = 0.37 and χN = 18 with Ns = 100 
and M = 323. For all simulations, the spatial resolution is fixed 
at M = 323. 

We use the numerical error of the mean-field free energy  
F to measure the accuracy of various algorithms[18, 19, 21]. The 
numerical error is defined as e(Ns) = F(Ns) − F0, where F(Ns) 
is the free energy computed by the SCFT calculation and F0 is 
the exact solution. Unfortunately, in general the exact value 
of F0 is not available. A conventional approach to circumvent 
this difficulty is taking the mean-field free energy computed 
by SCFT with the highest possible contour and spatial 
resolution as F0. However, this approach introduces extra 
numerical errors associated with the so-computed F0. 
Moreover, the computation of F0 costs a significant amount of 
the computation time during benchmark since a dramatically 
high resolution is required to obtain reasonably accurate F0. 
Here, we propose an alternative approach to avoid computing 
F0 by defining a “relative error” Δe = e(Ns) − e(Ns′) = F(Ns) − 
F(Ns′) = ΔF where Ns′ is the number of contour steps of the 



 J.Q. Song et al. / Chinese J. Polym. Sci. 2018, 36, 488−496 491 

https://doi.org/10.1007/s10118-018-2037-7 
 

adjacent benchmark run to Ns and Ns > Ns′. It can be shown[27] 
that ΔF is related to the numerical error as ΔF = (rp − 1)e, 
where r is the ratio of the size of contour step on the coarse 
grid to that on the fine grid, and p is the theoretical order of 
accuracy. By properly choosing the contour steps for each 
benchmark simulations, rp − 1 can be restricted to a small 
range around 1. Therefore, ΔF should be a good estimate of e, 
allowing us to use ΔF directly in the following benchmark. 

We have carried out a series of benchmark runs with 
various number of contour steps and plotted the relative error 
as a function of Ns in Fig. 1(a). In this log-log plot, the slope 
of a curve for an algorithm indicates the order of accuracy of 
this algorithm. It clearly shows that the OS2 algorithm is 
second-order accurate as expected, while our ETDRK4 
algorithm possesses the same order of accuracy as the RQM4 
algorithm which is fourth-order. Remarkably, it can be seen 
that the whole curve of the ETDRK4 algorithm is below the 
curve of the RQM4 algorithm. The difference of the relative 
error between these two algorithms is more than one order of 
magnitude. It means that, at the same contour resolution, our 
ETDRK4 algorithm is at least ten times more accurate than 
the RQM4 algorithm. Consequently, we can use much fewer 
contour steps in the ETDRK4 algorithm to obtain the same 
level of accuracy as the RQM4 algorithm. 
 

Fig. 1  Performance of the ETDRK4, RQM4 and OS2 algorithms 
in computing the bicontinuous gyroid structure of a AB diblock 
copolymer melt with f = 0.375 and χN = 18: (a) the relative error as 
a function of Ns and (b) the least total computation time needed to 
achieve the relative error ΔF(Ns) (The spatial resolution is fixed at 
M = 323) 

The order of accuracy alone, however, cannot fully 
characterize the performance of an algorithm. The efficiency 
of an algorithm also depends on the number of operations for 
each contour stepping. Although our ETDRK4 algorithm 
outperforms other two algorithms in the aspect of accuracy at 
the same contour resolution as shown in Fig. 1(a), it is not 
necessarily true to conclude that the ETDRK4 algorithm is 
the fastest one to achieve a certain level of accuracy because 
for each contour stepping it requires four pairs of FFT 
operations which are larger than one and two pairs for the 
OS2 algorithm and the RQM4 algorithm, respectively. In fact, 
a more complete way to compare the efficiency of different 
algorithms is to compare their overall computation time for 
obtaining a certain level of accuracy. The computation time as 
a function of ΔF(Ns) is thus plotted in Fig. 1(b). It clearly 
shows that our ETDRK4 algorithm requires much less 
computation time than the RQM4 algorithm to obtain a 
certain level of accuracy. Moreover, the advantage of the 
ETDRK4 algorithm expands as the given accuracy increases. 
Convergence in Nx  
In this part, we examine the convergence property in the 
spatial domain of the ETDRK4, OS2 and RQM4 algorithms. 
A series of SCFT calculations have been performed with 
various spatial resolution at fixed contour resolution. A 
diblock copolymer melt with f = 0.32 is chosen, which also 
forms a bicontinuous gyroid phase at χN = 40. Similar to the 
previous part, all simulations are performed in a cubic unit 
cell with a stress-free cell size. The spatial resolution is 
determined by the number of collocation points along each 
direction in the unit cell which is denoted as Nx. Note that the 
total number of collocation points in a unit cell is M = Nx

3. 
We adopt the relative error approach introduced in the 

previous part to characterize the accuracy of various 
algorithms. The relative errors of various algorithms as a 
function of the spatial resolution are plotted in Fig. 2. The 
three algorithms are all pseudo-spectral algorithms. It is 
expected that they should converge exponentially in the 
spatial resolution. For the same segregation strength of χN = 
40, it can be seen that the curves of three algorithms almost  

 

Fig. 2  Convergence property in the spatial resolution of various 
algorithms for computing bicontinuous gyroid structure of a 
diblock copolymer melt with f = 0.32 (ΔF(Nx) is a relative error 
defined as the difference of the free energies between two adjacent 
SCFT simulations. The numbers in the parentheses in the legend 
denote the values of χN and Ns, respectively.) 
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coincide with each other, indicating that they share the same 
convergence rate. Moreover, they all converge exponentially, 
i.e. decaying linearly in the semilog plot shown in Fig. 2, as 
expected. For stronger segregation strength (χN = 80), the 
exponential convergence rate of the ETDRK4 algorithm does 
not change. However, its accuracy degrades significantly due 
to the increase of the segregation strength. The decrease of 
accuracy can be understood that the interface between A-rich 
and B-rich domains becomes sharper as the segregation 
strength increases which requires higher spatial resolution to 
compute it accurately. Therefore, it becomes harder and 
harder to compute the gyroid structure when the segregation 
strength enhances. This provides a good opportunity to 
further address the performance of various algorithms which 
we will discuss in the next section. 

Application 1: Phase Boundaries of the Gyroid Phase in 
the Strong Segregation Regime 
The bicontinuous gyroid phase has once been mistakenly 
identified as the ordered bicontinuous double diamond 
(OBDD) phase in the experiments[28]. Later, Matsen and 
Schick[15] proved that the gyroid phase is actually more stable 
in the weak and intermediate segregation regime based on 
SCFT calculations using the spectral algorithm. However, in 
the strong segregation regime a triple point at around χN = 60 
was inferred from their SCFT calculations and above it the 
gyroid phase lost its stability[29], reflecting the difficulty of 
using the fully spectral algorithm in dealing with the 
self-assembly of block copolymers in strong segregation 
regime where a large number of basis functions are needed. 
Cochran, Garcia-Cervera and Fredrickson[18] readdressed this 
issue using a more efficient fourth-order pseudo-spectral 
algorithm (CGF4). No evidence of the loss of stability of the 
gyroid structure has been found by computing at segregation 
strength up to 100. 

The performance of three pseudo-spectral algorithms, the 
OS2 algorithm, the CGF4 algorithm and the RQM4 algorithm, 
as well as the full spectral algorithm has been systematically 
studied by Stasiak and Matsen for the SCFT calculations of 
the gyroid phase in the weak and intermediate segregation 
regime[21, 30]. It is found that the most efficient algorithm is the 
full spectral algorithm when the segregation strength is weak 
(χN < 40). However, the efficiency of the full spectral 
algorithm decreases sharply with the increase of segregation 
strength due to its O(M3) computational complexity, which 
renders it of little use in the strong segregation regime (χN > 
50). In the strong segregation regime, the RQM4 algorithm 
delivers the best performance among all the algorithms they 
have tested. 

We have demonstrated in the previous section that our 
ETDRK4 algorithm performs better than the RQM4 
algorithm when the segregation strength is 18 (weak 
segregation). Here we further compare the performance of 
these two algorithms in strong segregation regime and 
investigate the dependence of the efficiency on the 
segregation strength. We first analyze the order of accuracy of 
these two algorithms as a function of the segregation strength 
as shown in Fig. 3(a). It can be seen that the order of accuracy 

of our ETDRK4 algorithm is slightly better than the expected 
fourth-order. Furthermore, the order of accuracy even 
improves as the segregation strength increases. On the 
contrary, the order of accuracy of the RQM4 algorithm 
gradually decreases and it is worse than that of the ETDRK4 
algorithm for all χN values we have tested. This discrepancy 
suggests that we can use fewer contour steps in our ETDRK4 
algorithm as compared to the RQM4 algorithm, which is 
confirmed by plotting the optimum number of contour steps 
for both algorithms to ensure the relative error less than 10−4 
as a function of χN in Fig. 3(b). Figure 3(c) displays the total 
computation time to solve a MDE for both algorithms, which 
further confirms the previous conclusion. Note that the 
ETDRK4 is about 30% faster than the RQM4 algorithm at  
χN = 80. 

It is helpful to break down the total computation time for 
solving a MDE into two factors: the number of contour steps 
and the computation time per contour step. The ratios of these 
two factors between the ETDRK4 and the RQM4 algorithms 
are plotted in Fig. 3(d). It reveals that although the ETDRK4 
algorithm is about 1.5 times slower than the RQM4 algorithm 
for computing each contour step, the RQM4 algorithm 
requires at least 1.7 times more contour steps, resulting in the 
better performance of the ETDRK4 algorithm. Moreover, the 
ratio of the computation time per contour step remains 
constant while the ratio of the number of contour steps 
amplifies as χN increases. Therefore, the improvement of our 
ETDRK4 algorithm mainly comes from the efficient 
reduction of the number of contour steps. 

With our improved algorithm, we now are ready to apply it 
to solve real problems and check its practical performance. In 
particular, here we utilized it to determine phase boundary 
points on the cylindrical/gyroid (C/G) phase boundary and the 
gyroid/lamellar (G/L) phase boundary at χN = 40 and χN = 80. 
The precision of the phase boundary point depends on the 
accuracy of the computed free energy. To obtain four significant 
digits of fC/G and fG/L, we need the spatial and the contour 
resolution high enough that the error of the free energy is less 
than 10−5. For χN = 40, this requires Ns ≈ 100 contour points 
and Nx ≈ 64 collocation points for each dimension of the unit 
cell. These values can be obtained by looking them up in   
Figs. 1(a) and 2. Similarly, at χN = 80, it requires Ns ≈ 150 and 
Nx ≈ 128. The results are shown in Table 1 where we also list 
previously reported phase boundary points computed by the 
CGF4 algorithm and the full spectral algorithm for 
comparison[18, 30]. As can be seen, the ETDRK4 algorithm is 
significantly better than the CGF4 algorithm since the CGF4 
algorithm with Ns ≈ 1000 and Nx ≈ 128 only gives three 
significant digits. Note that our results are almost identical to 
those obtained by the full spectral algorithm with 5000 basis 
functions. It is difficult to directly compare our algorithm 
with the spectral algorithm since the efficiency of these two 
algorithms is controlled by different parameters. However, 
the poor computational complexity O(M3) of the spectral 
algorithm implies that our algorithm should do better when 
χN is large enough owing to the fact that our algorithm only 
scales as NsMlnM. 
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Fig. 3  Comparison of the performance of the ETDRK4 and RQM4 algorithms in computing the gyroid structure of the diblock 
copolymer melt in strong segregation regime: (a) the order of accuracy as a function of χN, (b) the optimum Ns to ensure the relative error 
ΔF(Ns) is less than 10−4 as a function of χN, (c) the total computation time to solve a MDE as a function of χN, (d) the ratio of the 
optimum Ns needed by the RQM4 algorithm to that needed by the ETDRK4 algorithm, and the ratio of computation time per contour step 
of the ETDRK4 algorithm to that of the RQM4 algorithm (The spatial resolution is fixed at Nx = 128.) 
 

Table 1  Phase boundary points of the gyroid phase as a function of the segregation strength 

χN 
fC/G fG/L Δf = fG/L – fC/G 

ETDRK4 CGF4[18] Spectral[30] ETDRK4 CGF4 Spectral ETDRK4 CGF4 Spectral 

40 0.31525 0.3153 0.31528 0.33741 0.3367 0.33742 0.02216 0.0217 0.02214 
80 0.30966 0.3088 0.3096 0.32426 0.3242 0.3244 0.01459 0.0154 0.0148 

fC/G and fL/G are the volume fraction of the A block at the C/G phase boundary and the L/G phase boundary, respectively, and Δf is the width of the gyroid phase 
region. 

 
Application 2: Triple Point of C/L/O70 
Bates and coworkers[31, 32] discovered an interesting noncubic 
triply periodic network structure (O70) in linear triblock 
copolymer melts, which is topologically similar to the gyroid 
phase and the hexagonally perforated lamellar (HPL) 
phase[31]. Using SCFT calculations, Tyler and Morse[33] 
predicted that the O70 phase is also stable in diblock 
copolymer melts in addition to linear triblock copolymer 
melts. For the diblock copolymer melts, the O70 phase appears 
in the weak segregation regime and is enclosed by the L, G, 
and C phases. There are two obvious triple points, L/G/O70 
and C/G/O70, which have been first calculated by Tyler and 
Morse[33] and later refined by Matsen[30]. However, it remains 
unclear about the existence of the C/L/O70 triple point due to 
the limitation of numerical accuracy of previous SCFT 
calculations[33]. 

In this study, our improved algorithm empowers us to 
extend the work of Matsen[30] to explore the C/L/O70 triple 
point. Figure 4 illustrates two possible scenarios of the phase 

diagram near the critical point. The metastable C/L phase 
boundary, where FC = FL, should locate inside the O70 phase 
region[30]. If the C/L/O70 triple point does not exist, the 
metastable C/L phase boundary will extend to the critical 
point. Otherwise, it will end at the C/L/O70 triple point and the 
stable C/L phase boundary connects the triple point and the 
critical point. To confirm the existence of this triple point, it is 
most convenient to compute the free energy of the O70 phase 
and compare it with the metastable C/L phase boundary. 

The metastable C/L phase boundary can be determined by 
sweeping χN at each given f. Some typical sweeps are shown 
in Fig. 5(a) by plotting FC − FL as a function of χN. Clearly, 
the crossover point between the data curve and the FC − FL = 0 
line is the phase boundary point. The metastable C/L phase 
boundary is then obtained by connecting all these crossover 
points as shown in Fig. 5(b). The rightmost point on the phase 
boundary computed by the ETDRK4 algorithm, i.e. the one 
closest to the critical point, is (f = 0.499, χN = 10.49514). 
Note that the critical point is (f = 0.5, χN = 10.495).
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Fig. 4  Illustration of the possible topology of the metastable C/L phase boundary inside the O70 phase region (a) if the 
C/L/O70 triple point does not exist or (b) if it exists (The black dot at f = 0.5 is the critical point) 

 

Fig. 5  (a) Determination of the metastable C/L phase boundary by identifying crossover points where FC − FL = 0; (b) The 
metastable C/L phase boundary for a diblock copolymer melt 

 
To see whether the O70 phase changes its stability along the 

metastable C/L phase boundary, it is helpful to plot the free 
energy difference 70C / L O

F F−  in Fig. 6. It can be seen that 
the free energy difference is always positive, meaning that the 
O70 phase is stable all along the metastable C/L phase 
boundary we have calculated. Therefore, it appears that the 
C/L/O70 triple point does not exist when f ≤ 0.499. Note that 
the difference of the free energy at f = 0.499 is extremely 
small (about 10−11). And it will become even smaller when f 
approaches 0.5, which makes the numerical calculation 
infeasible. However, it seems that the trend of the decrease of 
the free energy difference will continue and the curve will 
eventually converge at the critical point, suggesting that the 
C/L/O70 triple point does not exist corresponding to the 
scenario of Fig. 4(b). On the other hand, even if the C/L/O70 
triple point does exist in the range of 0.499 < f < 0.5, in 
practical it is not that important because it is almost 
impossible to control the volume fraction of the A block in 
such a narrow range. Moreover, the phase diagram near the 
critical point is vulnerable to thermal fluctuations and the 
C/L/O70 triple point will be destroyed under the experimental 
condition. 

It is worth explaining why it is difficult to address the  

Fig. 6  The difference of the free energy between the C/L meta 
boundary and the O70 phase, 70C/L O

F F− , as a function of the 
volume fraction of the A block 

 
stability of the O70 phase close to the critical point. There 
are mainly two reasons. One is that the extremely small free 
energy difference requires the same level of accuracy of the 
free energy which in turn requires significantly high spatial 
and contour resolution in SCFT calculations. In principle, 
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the best accuracy one can achieve is the machine accuracy 
which is about 10−16 for double precision floating point 
calculations. In practice, however, the best accuracy is 
limited by other factors such as the rounding error and the 
mismatch of the spatial and contour resolution. For a typical 
implementation of the ETDRK4 algorithm, the limit of the 
accuracy is about 10−14. 

The other reason is best explained by Fig. 7. The free 
energy of a phase should be computed with a stress-free unit 
cell size. This size can be obtained by adjusting the cell size to 
minimize the free energy. Figure 7(a) shows a typical 
minimization for the O70 phase with f = 0.495 at χN = 10.5012 
using the Brent method[34]. The stress-free size L* corresponds 
to the minimum position which is 3.7298Rg in this case. As 
the cell size deviates from the stress-free size by ΔL = L − L*, 
the free energy increases from F(L*) to F(L). Therefore, it 
introduces an extra error ΔF = F(L*) − F(L) to the free energy, 
which scales as ΔL2 as revealed by the log-log plot in Fig. 7(b). 
The error ΔF can be reduced by carrying out more minimizing 
iterations. However, it requires enormous number of 
iterations to reduce ΔF down to the level of 10−12, which 
makes the calculation infeasible. 
 

Fig. 7  Influence of the unit cell size on the free energy of a 
diblock copolymer melt with f = 0.495 at χN = 10.5012: (a) the 
free energy of the O70 phase as a function of the unit cell size in 
the vicinity of the stress-free size (L* = 3.7298Rg) corresponding 
to the minimum free energy; (b) deviation of the free energy from 
the minimum, ΔF = F(L) − F(L*), as a function of ΔL = L − L* 
(The solid curve in (a) is a parabola which best fits the data.) 

CONCLUSIONS 

A fourth-order exponential time differencing Runge-Kutta 
algorithm has been developed to solve the modified diffusion 
equation, which greatly improves the efficiency of the SCFT 
calculation. According to our benchmark, it is the 
convergence property in the chain contour resolution that 
makes the ETDRK4 algorithm superior to other algorithms 
such as OS2, CGF4, and RQM4. The superior performance of 
the ETDRK4 algorithm is also owing to the fact that it 
converges exponentially in the spatial resolution, which is the 
best convergence rate a numerical algorithm can achieve. 

The power of our improved algorithm has been 
demonstrated by applying it to calculate two representative 
examples in diblock copolymer melts: the bicontinuous gyroid 
phase in the strong segregation regime and the stability of the 
O70 phase close to the critical point. The calculation of the 
gyroid phase in the strong segregation regime requires 
tremendous computational resources using existing 
algorithms. With our ETDRK4 algorithm, it is possible to 
significantly reduce the computational cost. More remarkably, 
the performance of the ETDRK4 algorithm becomes better as 
the segregation strength enhances, while on the contrary the 
RQM4 algorithm, as the most efficient algorithm among all 
reported algorithms, gets worse. This makes our ETDRK4 
algorithm the best choice for calculating strongly segregated 
systems. Apart from the accuracy of the ETDRK4 algorithm, 
its correctness was also verified by computing the C/G and 
G/L phase boundary points at χN = 40 and χN = 80 and 
comparing them with those computed by the full spectral 
algorithm. 

Another challenging problem is to examine the existence of 
the C/L/O70 triple point in diblock copolymer melts. The 
major difficulty is that the free energy difference between the 
metastable C/L phase boundary and the O70 phase close to the 
critical point becomes extremely tiny. Using our ETDRK4 
algorithm, we have verified that there is no C/L/O70 triple 
point up to f = 0.499. It becomes infeasible to further improve 
our result because we have hit the machine accuracy using 
double precision floating arithmetic. However, the trend of 
the change of the free energy difference towards the critical 
point highly suggests that the C/L/O70 triple point does not 
exist. As the most efficient real-space technique to date, we 
expect that the ETDRK4 algorithm will become the first 
choice for high accuracy SCFT calculations of complex phase 
microstructures of block copolymers in the near future. 
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