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Abstract The influence of the surface interaction on the mesoscopic structure of grafted polymers in good solvents has been examined.
At high surface coverage, tethered polymers are in the brush state and the parabolic segment density profile is confirmed by self-consistent
field theory (SCFT) calculations. It is found that this is a universal behavior for a whole range of surface interactions from complete
repulsion to strong attraction. More interestingly, finite surface repulsion may lead to the maximum in the proximal layer of its segment
density profile, which is significantly different from both the depletion layer of pure repulsion and the adsorbing layer of attraction. In
addition to the brush state on both repulsive and attractive surfaces, three additional surface states were identified by analyzing the scaling
behavior of the layer thickness of polymer brushes: the mushroom state on repulsive substrates, the dilute and the semidilute surface states

on attractive substrates.
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INTRODUCTION

Polymer brushes, being polymer chains with one end
tethered to solid surfaces or interfaces by covalent bonds,
have attracted constant attention due to its fundamental
importance in vast applications including templating for
directed self-assembly (DSA), colloidal stablization, smart
materials as well as bio-related applications such as anti-
biofouling and biosensing!! 1. After the pioneering work of
Alexander!'%) and de Gennes!''l, many theoretical methods in
addition to the scaling analysis have been introduced to
investigate both static and dynamic properties of polymer
brushes. Some prominent examples are the strong stretching
theory (SST) of Milner('? '3, the classical theory accounting
for finite stretching derived by Netz and Schick[!'¥], and self-
consistent field theory (SCFT)!'> 18], Owing to these efforts
together with computer simulations and experiments, the
theory of polymer brushes at least on impenetrable and
purely repulsive flat surfaces is well developed!?). In practice,
however, purely repulsive surfaces, as often assumed in
analytical theories, are hard to prepare. In many situations,
such as wetting, adsorption and capillarity, the interfacial
energy, which characterizes the interaction between surfaces
and polymer monomers, cannot simply be ignored. In fact,
studies of polymers adsorbed but not tethered to attractive
surfaces give some hints: the surface interaction can
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significantly —perturb the near-surface structure of
polymerst!7]. In contrast to absorbed polymers, tethered
polymers are able to stay even on the repulsive surfaces due
to their covalent bonds with the surface and the surface
density can be increased well beyond the value achievable by
adsorption effects alone.

Despite the significance of the presence of surface
interaction, much less attention has been focused on its
influence on the structure of polymer brushes, especially for
the case of weakly repulsive interactions. The scaling theory
for isolated tethered polymers on attractive surfaces has been
developed by Eisenriegler and coworkers(!8]. They found
that a surface phase transition occurs even for a single chain
system. Later, this treatment was extended to the case of
repulsive surfaces(!°] and to many-chain systems with a full
range of surface density from dilute to over saturation[2% 211,
The scaling forms of segment density profile (along the
grafting surface normal) and the layer thickness of polymer
brushes were obtained using scaling analysis. Under good
solvent condition, up to six surface states of tethered
polymers on interacting surfaces (both repulsive and
attractive) were predicted by Descas, Sommer and
Blumen(?!l. They are the brush and the mushroom states on
the repulsive surface and the dilute, the semidilute, the
oversaturated adsorbed and the oversaturated brush states on
the attractive surface. These results have also been verified
by Monte Carlo simulations(2!1.

Several attempts based on field theoretic approaches have
been made to treat the problem of polymer brushes
considering the surface interaction effects. Douglas and
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coworkers(?2! adopted renormalization group (RG) theory to
calculate the segment density in the dilute surface regime,
while analytical SCFT in the strong stretching limit was used
by Marko and colleagues(?] to discuss the structure of
polymer brushes in the brush state. Numerical SCFT
methods have also been considered but only lattice
formulation was implemented to study polymer brushes on
the attractive surfacel>4l. To model the surface interaction in
field theoretic simulations, such as in SCFT, a common
approach is to introduce an arbitrary surface potential which
should be convenient for numerical computations.
Nevertheless, this approach may require high spatial
resolution near the surface to model the repulsive part of the
surface potential, which would make the computation too
expensive. A preferable alternative approach is to use an
effective boundary condition which avoids resolving the
surface potential explicitly?S. However, such boundary
conditions are usually non-periodic, which renders Fourier
based pseudo-spectral methods, such as that in Ref. [26],
inapplicable in solving the modified diffusion equations
(MDEs). Recently, we have developed a highly efficient
algorithm, ETDRK4[27], which can handle general non-
periodic boundary conditions, such as the Robin boundary
condition (RBC), and still retain the spectral accuracy as in
the conventional pseudo-spectral algorithms(23: 291,

So far, we are not aware of any report on numerical SCFT
in the continuum limit that treats the surface interaction
between polymer brushes and grafting surfaces in a
consistent manner. Despite this, SCFT provides much more
details about the segment profile and the end-segment
distribution. And in principle, it can be generalized to
different solvent conditions and mixed brushes as well as
polymer chains with various chain architectures, as
compared with scaling theories. In this paper, we utilize our
recently developed tool to solve the SCFT problem of
homopolymer brushes in good solvents on interacting
surfaces. The effects of surface interactions, the excluded
volume interaction and the grafting density on the structure
of polymer brushes are carefully examined. Five distinct
surface states of polymer brushes on the interacting surfaces
have been identified by analyzing the scaling relation
between the layer thickness and the stretching parameter (£)
as a function of the surface interaction.

NUMERICAL METHODS

We consider n polymer chains, each comprising N identical
statistical segments of length b, are randomly and
permanently tethered to a flat, impenetrable surface (wall).
The tethered polymers are immersed in good solvents and the
total volume of the system is V = LZL_ZL, where L, and L, are
the length of the system along z direction which is normal to
the grafting surface and lateral size, respectively. The
grafting density is defined as number of polymer segments
per unit area, o = nN, /Li. We adopt the SCFT description of
such kind of system and the set of SCFT equations and their
derivation details can be found in Refs. [25] and [30]. In
particular, polymers are modeled as continuous Gaussian

chains and solvent molecules are implicitly treated as an
excluded volume interaction with polymer segments. Note
that such implicit treatment of solvents has some limitations
because only binary interactions are considered. This model
is valid only when the polymer concentration is low enough.
It is recommended to refer to, for example, Ref. [31] for a
detailed discussion.

We numerically solve the set of SCFT equations using a
self-consistent scheme in which the solution of modified
diffusion equations (MDEs) is the most time-consuming
step. To efficiently handle non-periodic boundary conditions
in the MDEs, we discretize spatial variables on a one
dimensional Chebyshev-Gauss-Lobatto (CGL) grid with a

set of grid points zj:cos(%),jzo,l,...,Nz. Then the

z
MDEs are solved by a fourth order time stepping method,
ETDRK4, which performs extremely well for SCFT
calculations as shown in our previous studyl?’l. The
numerical details, tweaks, and performance of this method
can be found elsewherel271,

The initial boundary condition arising from the grafting
points of the polymer brushes contains a Dirac delta
function, which brings additional difficulty that it will
deteriorate the convergence properties and produce
oscillations in the self-consistent fields and density
profiles(26: 321, Several numerical approximations for the
Dirac delta functions have been considered and their
performance were examined carefully, including the
Kronecker deltal®2], a Gaussian distribution with very narrow
peak width[26], the derivative of the Heaviside function, and
an approach that propagates one contour step using an
integral form corresponding to the MDEB2. After
comparison of these approaches, we choose the last one that
is the most accurate and shows excellent stability.

The normalized single chain partition function Q and the
mean-field free energy F, both of which can be expressed as
spatial integrals, are evaluated by the Clenshaw-Curtis
quadrature schemel33], which converges exponentially on the
CGL grid. Finally, a continuously steepest descent algorithm
is used to relax potential fields to the equilibrium state, i.e.
the saddle point of the set of SCFT equations(2°].

RESULTS AND DISCUSSION

Polymer-surface Interactions

Among all energy contributions, we will pay particular
attention to the polymer-surface interactions. We assume that
polymer-surface interactions are short-ranged and only
binary interactions are important. Generally, given the
potential energy per segment ¢(z) which is normalized
according to [dzep(z) =1, the Hamiltonian for polymer-
surface interactions can be written as(*’]

Hq = [&rlip (2)p(r) (1)
where [y is a parameter that measures the total surface
interactions and p(r) denotes the segment density at position
r. To gain a qualitative knowledge about [, it is helpful to
introduce a ¢(z) being a simplified form for the van der
Waals interaction, i.e. ¢(z) =+co when z> gy, otherwise
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9(2) = —po(0s/2)°. By analogy to the theory of real gas, we
can obtain the magnitude of the integral binary surface
potential

FSZO'S(I_](Z_OT) (2)
The above relation is in essential the same as that derived by
Douglas et al.l*¥ if we replace ¢, /kg by 4. Obviously, 04 is
a temperature that makes /s vanish. In other words, it
denotes a compensation point where attractions between the
surface and polymer segments exactly cancel out entropic
repulsions experienced by polymer segments near an
impenetrable wall??l. By lowering the temperature, or
alternatively raising 6o (making the potential well deeper),
Iy tends to be negative indicating that the grafting surface
attracts polymers. Oppositely, positive [ corresponds to the
case of a repulsive surface. In the limit of /—o0, polymer
segments are completely repelled by the grafting surface.

In this study, we consider a surface potential of the form
¢ (2) = 0(z), which is a delta function situated at z = 0. It has
been demonstrated that the delta function surface potential
can model any particular ¢(z) by appropriately chosen Iy at
least in the situation under the ground state dominance
approximation(33]. Therefore we can conveniently consider
the delta function surface potential as an effective surface
potential for all binary surface interactions. According to de
Gennesl!”! and Wu et al.[3], the statics of a polymer in the
delta function surface potential can be described by a Robin
boundary condition on the diffusion equation at the grafting
surface of the following form
?E:O = —Kaql:=0 (3)

s

where g = ¢(r,s) is a propagator function which represents
the spatial probability distribution of the segment of length s
along the chain contour from the starting segment (0 < s <
N). In Eq. (3), ky=-3I/a*> and clearly its absolute
reciprocal value ! is a length scale that characterizes the
net strength of the surface interactions. Note that x, has an
opposite sign of /'y, meaning that negative x, corresponds to
the case of repulsive grafting surfaces and vice versa. As for
the polymer/air interface, the boundary condition can be
similarly imposed by replacing x, and z =0 in Eq. (3) with xy
and z = L, respectively, where x; !is another length scale
that characterizes the strength of the surface interactions at
polymer/air interface. In this study, we will not consider the
polymer/air interactions and &y, = —oo is assumed throughout.
Furthermore, the box size L; is chosen large enough to avoid
any unnecessary effects caused by the polymer/air interface.

To circumvent the difficulty of Robin boundary conditions
and other non-periodic boundary conditions encountered in
the numerical solution of SCFT equations, we introduce the
Chebyshev-Gauss-Lobatto (CGL) grid other than uniform
grid, and collocate all spatial variables on the grid. The
modified diffusion equations are then solved by an
exponential time differencing method combined with a
fourth order Runge-Kutta scheme (ETDRK4) based on the
Chebyshev series expansion. In our previous study[?’l, we
have demonstrated that this numerical approach is superior

to equispaced grid based methods due to its high resolution
near boundaries. And it is also more efficient than the
operator splitting method coupled with Chebyshev series
expansion developed by Hur et al3% owing to its better
convergent properties and less time demanding operations.

Structures of Polymer Brushes

By considering the grafting surface as an impenetrable wall
and ignoring any surface interactions, the Alexander box
model of polymer brushes predicts that the brush thickness
scales as Ng'/3[1% 1l Thus it is natural to rescale all length
quantities with respect to 2=Na'/3(2v0a2/3)1/3 to make
them dimensionless, where vo is the exclude volume of a
polymer segment which characterizes the strength of
interactions between polymer segments and solvent
molecules.  With  dimensionless exclude  volume
7o = voN2 /Rg and grafting density o= aRé /C it can be
expressed more compactly as Z= (41706C)” 3Rg, where
C :pORg/N is an important parameter that signifies the
validity of mean-field approximation (p, is the average
segment number density). Meanwhile, we introduce a
dimensionless, rescaled, segment density ¢ =p/p with
p = No/Z being the averaging segment density over Z.

For homopolymers tethered to a neutral impenetrable
surface where k, — —oo, it has been shown by Netz and
Schick!4 that the only parameter remaining in SCFT is the
stretching parameter f= (W&C/2)2/ 3= (2/2Rg)2, which
measures the degree of polymer chains being stretched. For
p < 1, tethered polymers are in the so-called “mushroom”
state. The height of the polymers tends to be the size of the
unperturbed polymer coil, thus significantly larger than the
typical length scale Z. When f is large enough, tethered
chains feel the exclude volume interactions from neighboring
chains, leading to the “brush” state. Therefore, there is a
mushroom to brush transition along increase of f. In the
limit of infinite stretching, S — oo, density profiles from
SCFT calculations approach the prediction of strong
stretching theory (SST), as demonstrated in Fig. 1 and in the
work of Netz and Schickl!4l. SST %1/530 predicts a constant
dimensionless brush height of 3 %
that the brush height is on the order of Z, while our SCFT
calculations given in the inset of Fig. 1 show that the
dimensionless brush height depends on S and gradually
approaches to the predicted value. The dimensionless brush
height h/Z decreases with the increase of £, which seems to
counter the fact that the brush height / should increase as the
grafting density o increases. We should point out that the
opposite behavior is caused by the fact that both Z and f are
dependent on ¢. This result is consistent with that revealed
by the off-lattice Monte Carlo simulationl*’l. Note that exact
value of the layer thickness of tethered polymers depends on
its definition. In this study, the layer thickness is defined as

_ Jdzz4(2)
= e @

while in the SST it is common to choose the height where the
polymer  density  approaches  zero, denoted as

~ (.32, which means
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Fig. 1  Rescaled density profiles as a function of the rescaled

distance from the grafting surface along the surface normal
calculated by SCFT with Dirichlet boundary condition (x, — —00)
at grafting surfaces. The dash line profile, ¢(z) = (3m/4)?> — (nz/2)?,
is the result of SST. The inset plots the layer thickness as a function
of 8, where the horizontal solid line is the prediction of SST.

6\1/3
Im = (P) [14]. Consequently, the layer thickness at SST

using definition as in Eq. (4) is only - of zm. Like the
numerical results of Netz and Schick!'#], we also observe a
depletion layer near the grafting surface and an exponentially

decaying tail far away from the grafting surface. The
numerical results confirm that length scales of these two
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regions over the brush height become vanishingly small as
f — oco. Note that SST corresponds to the case of SCFT when
the wall is purely repulsive (i.e. k; — —o0) and f — oo.

For homopolymers tethered to an interacting surface
where «, is finite, grafted polymers will eventually evolve
into the brush state as f increases no matter whether the
grafting surface is repulsive or attractive. Segment density
profiles obtained from our SCFT calculations for four typical
surface affinities are presented in Fig. 2, where the parabolic
feature in profiles at large § clearly indicates the emergence
of the brush state. For attractive surface, as shown in
Fig. 2(d), at low B density profiles resemble those of
adsorbed polymerst!?l. In this regime, polymer chains are
fully adsorbed on the surface. Each chain consists of a string
of adsorption blobs containing g segments each. These blobs
form a quasi-two dimensional layer on the surface. This
layer thickness defines another characteristic length D = g"a
which scales as «,"'? in addition to the size of polymers in
the good solvent Rg = NVa, where v is the Flory exponent for
real chains in good solvents and ¢ is the surface crossover
exponentl?!l, ITn our SCFT calculations, the adsorption length
D actually decreases by enhancing the surface attraction x,.
A log-log plot of the density profiles in Fig. 2(d) shows that
the density obeys a power law ¢(z) ~z7!/3 for a < z < D,
indicating a self-similar structure of tethered polymers near
the grafting surface. This observation agrees well with the
prediction of the scaling theoryl!%- 38 It is interesting to
mention that the proximal behavior of the segment density
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Fig. 2 Rescaled segment density profiles as a function of the rescaled distance from the grafting surface calculated
by SCFT with (a) k, = —10, (b) &y = —4, (¢) k3 = 0, and (d) k, = 5. For each part, the values of § for profiles from
bottom to top are 0.6, 1.0, 1.8,2.9, 4.6, 6.1, 7.4, 8.5, 9.7, and 10.7, respectively.
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does not change with f. This should be clearly seen in
Fig. 2(d) for B greater than 2.9 when the parabolic feature
begins to develop—for each S profile the parabolic feature
starts at nearly the same distance from the grafting surface. It
is understandable that the adsorption blob is solely controlled
by the surface interaction but not by the effective surface
coverage. To see that there is actually a transition from the
adsorbed state to the brush state, we plot the distribution
function of free end segments in Fig. 3(b). The distribution
function should decrease monotonously in the adsorbed state
while it will have a smooth maximum in the brush state. As
can be seen in Fig. 3(b) for x, = 5, the maximum emerges at
f = 3.8 and becomes more and more pronounced as f
increases.

For repulsive wall, we have observed depletion layers for
all x, < 0 we studied. It is believed that the conformation of
tethered polymers is dominated by entropic effects and it is
basically isotropict20- 211, This suggests that the segment
density should be similar to that of the purely repulsive
case—there is only one broad and smooth maximum located
at distance RF in mushroom state and the maximum moves
toward the surface in the brush state as f increases.
However, in our SCFT results shown in Figs. 2(a) and 2(b),
two maxima can be identified, where the one near the wall is
captured neither by the previous scaling analysis(!®] nor by
mean-field studiesB°] and renormalization group methods(?2],
but we do notice some evidences of the first maximum in the
results of Monte Carlo simulations reported by Grest[40]. At
the same x, the position of the first maximum zr does not
change with f, while it shifts to the wall as x, increases.

More interestingly, the shift trend of the first maximum
seems to continue as x, turns from negative to positive. The
first maximum exactly locates at the wall when x, = 0 (see
Fig. 2), indicating zr = 0. As «x, keeps on going to positive,
the maximum can be viewed as being shifted to the other
side of the wall with zr < 0, thus the maximum is no longer
visible at the range z > 0. We infer from this observation that
the first maximum is produced mainly by the polymer-
surface interactions, for there is always a proximal layer near
the wall for any x,. The difference of the density profile in
the proximal layer is due to different conformations that the
polymer chain takes. The fact that the density is maximized

inside the proximal layer for the repulsive wall implies that
polymers take blob-like conformations whose center
corresponds to the position of the density maximum. The
density maximum disappears for the attractive wall because
polymers in the proximal layer also take blob-like
conformations but their center locate somewhere inside the
wall. In this case, the conformation looks like a spherical cap
lying on the grafting surface. Note that Flatt er all*!l also
proposed a similar model for comb copolymers adsorbed on
attractive surfaces. Using scaling analysis, de Gennes and
Eisenriegler found that the density profile of the depletion
layer for purely repulsive case (x, — —o0) may be described
by the scaling form ¢ (z) ~ z'/* and it obeys the scaling form
¢(z) ~z71/3 for attractive case (x, > 0), respectively. For
finite negative k,, here we assume that the former scaling
form controls the region 0 < z < z; and the later scaling form
dominates the region z > z; until the border of the proximal
layer is touched. Therefore, the density maximum in the
proximal layer is a direct consequence of the combination of
these two scaling laws.

For finite negative x, the repulsion of the wall is not
strong enough that the segment density at the wall
¢, =¢(z=0) does not vanish. ¢, increases as x, becomes
less negative, i.e. weakening of the repulsion of the wall, as
expected. In Fig. 3(a), it is easy to notice that there are a
certain amount of end segments on the wall even when the
wall is repulsive. However, the end-segment distribution
contains only one smooth maximum for both low and high S
unlike the segment density profile that generally has two
maxima.

Surface States of Polymer Brushes

Further analysis of the density profile by measuring the
thickness of the tethered polymers leads to the identification
of various regimes of surface states in f-x, parameter space.
The main results are presented in Fig. 4 where 1g(h/Ry) is
plotted as a function of lgf for different surface affinities
including both negative and positive x,. As mentioned in the
above section, for repulsive wall while x, < 0, there is a
mushroom-brush transition. For low £ in the mushroom
state, the layer thickness is essentially the size of polymer
coil in good solvents which should not vary with £. This is
confirmed in the top left corner of Fig. 4 for x, = —o0, —40,
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Fig. 3 Distribution function of end segments calculated by SCFT with (a) k; = —4 and (b) x, = 5. Profiles in both
(2) and (b) from bottom to top correspond to f = 0.6, 1.0, 1.8, 2.9, 3.8, 4.6, 7.4, and 10.7, respectively.
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the power law /Ry ~ B2

—10, and —4. When £ is large enough to enter the brush state,
it is well established that the brush thickness should obey the
scaling law h/R, ~ N(voo)'/?. And using the definition of 8
we have h/Ry ~ B2, This scaling law is well approached as
can be seen in the top right corner of Fig. 4.

For x, > 0, one can identify three distinct regions in Fig. 4.
When £ is large enough, tethered polymers are in the brush
state thus the layer thickness obeys the same scaling law
h/Rg ~ B'/? as that of repulsive case. As can be seen in
Fig. 2(d), the adsorbed layer consumes a significant amount
of segments which are expected to form brush. Therefore,
the brush thickness should be smaller than the brush formed
on the repulsive wall and it is supposed to depend on both S
and x, in the following form(23],

1

n=no(1-<)’ 5)

where /o is the brush thickness in the absence of attractive
surface interactions. If we rewrite Eq. (5) in the form

0.8
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(h/3)? = c(l - bxaﬂ_3/ 2) where the relation sy ~ Z is used and
¢, b are some constants, we expect a linear relation between
(h/2)? and [)’*3/ 2, By plotting (h/2)? as a function of ﬁ*3/ 2
shown in Fig. 5(b), we actually observe the linear
dependence at the large f region for all x, > 0 we studied.
Moreover, the slope of the straight part becomes deeper as «,
increases in consistent with Eq. (5).

When x, and f are both small, as in the middle left part of
Fig. 4, the layer thickness seems to also obey the scaling law
h/Rg ~ B2 or equivalently i ~ 2. The scaling law is further
confirmed by plotting the scaled layer thickness i/Z as a
function of x, for several small § (see Fig. 5a). Almost all
data points for different f in the range of 5 < x, < 15
collapse onto a universal curve. The scaling law, however,
has a very different origin than that of the brush state. A
possible interpretation based on scaling analysis of this
scaling law is given below. We assume in this regime
tethered polymers are in the semidilute surface state where
the grafting density exceeds a critical grafting density ¢* at
which the adsorbed chains start to overlap. According to
Bouchaud and Daoud?), ¢* can be written as
0" ~ N2, "2™% where v;=3/4 is the 2D Flory
exponent. The layer thickness has the scaling structure
h/ho = f(o/c*) with ho being the layer thickness when
o < 6211, At one limit 6/6* — 0, the function fapproaches 1
thus / = ho. Meanwhile, at such low surface coverage, chains
are all adsorbed on the wall and we have 4o = D. At the other
limit 0> ¢" but not yet large enough to form brush, the
loops and tails form an extended layer in addition to the
proximal layer, whose characteristic size is that of an
unperturbed chain, that is, 7 =R, ~ N 172 Combining these
two limits, we have the relation N'/2 ~ Df (¢/¢") which can
be satisfied only when f obeys a power law by noticing that
D is independent of N. Equating the exponents of N from
both side, we obtain the scaling law & ~ ¢'/42 = ¢!/3. Since
o is related to f as f~o°/3, the relation between layer
thickness and £ is finally achieved.

In the third regime of polymers grafted on the attractive
wall, x, is large and £ is low. The change of the layer

0.015 |
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The scaling regimes of brush heights of polymers tethered to absorbing surfaces: (a) The rescaled brush

heights as a function of x, for some small fs which are listed in the legend; (b) The rescaled brush heights as a
function of f for different x, (The curves from top to bottom correspond to k, = 5, 6, 7, 8, 10, 15, 20, and 30,
respectively. The solid straight lines are linear fittings for first few data points for each #;.)
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thickness with f# for different x, is shown in the lower left
corner of Fig. 4. We can see that the layer thickness is almost
constant with increasing £, indicating that tethered polymers
are strongly attracted to the wall and they are in the dilute
surface state. In this regime, the layer thickness is D, the size
of adsorption blobs which does not depend on £ as already
discussed in the section before.

Apart from the above three states for the case of x, > 0,
we also noticed that there was a crossover region where
was intermediate. Moreover, this region expands as x,
increases. Descas, Sommer and Blumen(?!l also predict a
similar state, which they named the oversaturated adsorbed
state, that it exists in a narrow region between the semidilute
surface state and the oversaturated brush state.

CONCLUSIONS

In summary, we have demonstrated that surface interactions
significantly impact the structure of tethered polymers by
using SCFT calculations. In the limit of complete repulsion,
there is a depletion layer of polymer segments near the wall.
As the surface interaction goes from repulsive to attractive,
the segment density at the wall increases monotonously. For
attractive wall, the segment density decreases monotonously
away from the wall. For weakly repulsive wall, two maxima
are present in the segment density profile, among which the
one closer to the wall corresponds to the center of the
proximal layer and the other corresponds to the center of the
polymer coil or the position the brush starts to develop. The
scaling law of the density profile near the wall agrees well
with the scaling analysis. By analyzing the scaling law of the
layer thickness, up to five surface states of polymer brushes
are identified in the parameter space of f and x,. For both
repulsive and attractive wall, the brush state can be achieved
either by enhancing the excluded volume interactions or by
increasing the grafting density, i.e. by increasing f. In the
brush state, the layer thickness scales as £'/2. For repulsive
wall and low £, polymers are in the mushroom state whose
layer thickness does not change with f. For attractive wall
and low f, two states are possible according to the strength
of the surface interaction. For strong attractions, polymers
are in the dilute state whose layer thickness is determined by
the adsorption blob size which is independent of f. For
relatively weak attractions, the layer thickness also obeys a
one half power law of f but with a very different origin and
polymers are in the semidilute surface state. A
straightforward extension of this work is to carry out studies
of the lateral structures of mixed brushes and block
copolymer brushes on interacting surfaces and polymers
tethered to curved interacting surfaces.
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