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Abstract   In unit cell simulations, identification of ordered phases in block copolymers (BCPs) is a tedious and time-consuming task, impeding

the advancement of more streamlined and potentially automated research workflows. In this study, we propose a scattering-based automated

identification strategy (SAIS) for characterization and identification of ordered phases of BCPs based on their computed scattering patterns. Our

approach leverages the scattering theory of perfect crystals to efficiently compute the scattering patterns of periodic morphologies in a unit cell.

In the first stage of the SAIS, phases are identified by comparing reflection conditions at a sequence of Miller indices. To confirm or refine the iden-

tification results of the first stage, the second stage of the SAIS introduces a tailored residual between the test phase and each of the known can-

didate phases. Furthermore, our strategy incorporates a variance-like criterion to distinguish background species, enabling its extension to multi-

species BCP systems. It has been demonstrated that our strategy achieves exceptional accuracy and robustness while requiring minimal compu-

tational resources. Additionally, the approach allows for real-time expansion and improvement to the candidate phase library, facilitating the de-

velopment of automated research workflows for designing specific ordered structures and discovering new ordered phases in BCPs.
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INTRODUCTION

Over  the  past  few  decades,  block  copolymers  (BCPs)  have
gained significant attention and found potential applications in
various fields,  including materials science,[1] chemistry,[2] micro-
nano electronics,[3] and biomedical engineering.[4,5] The remark-
able  potential  of  BCPs  lies  in  their  diverse,  complex,  and  cus-
tomizable  ordered  phases.  Even  two-species  BCPs  can  sponta-
neously assemble into a wide range of  phases,[6] such as pack-
ing of  cylinders,  cubic lattices of  spheres[7−9] (face-centered cu-
bic, A15 phase, etc.), triply periodic minimal surfaces[10−12] (dou-
ble gyroid, double diamond, etc.) and so on. Understanding and
characterizing  these  ordered  phases  is  essential  for  designing
functional materials with desired properties.

Theoretical  and  experimental  studies  have  led  to  signifi-
cant advancements in understanding ordered phases of BCPs.
When studying the equilibrium phase behavior and phase di-
agrams, one of the most successful theoretical methods is the
unit  cell  self-consistent  field  theory  (SCFT)  calculation.[13,14]

The  unit  cell  calculations  ensure  the  converged  structures
from  SCFT  calculations  being  perfectly  ordered.  In  recent
decades, the application of unit cell SCFT calculations has fa-

cilitated the interpretation and prediction of diverse ordered
phases in various BCP systems.[6,15−17] New stable phases con-
tinue  to  emerge  even  in  the  simplest  diblock  copolymers,
such as Frank-Kasper σ,[18] A15[19,20] and so forth. Recent stud-
ies  have  further  revealed  how  the  compositional  and  topo-
logical  manipulations  provide  opportunities  for  designing
materials with complex morphologies.[21−23]

During  computation  of  a  phase  diagram,  the  thermody-
namic equilibrium phase at a particular point in the parame-
ter  space  is  determined  by  calculating  and  comparing  the
free energies of multiple candidate phases.[24] Due to the con-
tinuous discovery of stable phases, more and more candidate
phases have to be computed. Typically, the construction of a
single phase diagram requires thousand times of free energy
calculations. Thus, it is of great interest to automate the phase
diagram calculation as much as possible. However, the prima-
ry bottleneck hindering the automation of such process lies in
the identification and confirmation of phases being comput-
ed  due  to  the  fact  that  SCFT  calculations  often  converge  to
structures that are different from the one given initially. In ad-
dition, manual identification of ordered phases relies on visu-
al  inspection of  the converged density  distributions which is
hard  to  distinguish  subtle  differences  between  perfect  or-
dered  structures  and  slightly  distorted  ordered  structures.
Therefore,  it  is  highly  desirable  to develop a  reliable  identifi-
cation  method  to  automate  the  calculation  of  free  energies,
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thereby improve the efficiency of phase diagram calculations.

χN

In  recent  years,  efforts  have  been  made  to  achieve  auto-
mated  phase  identification  of  ordered  structures  obtained
from SCFT calculations,  thereby providing valuable feedback
for simulation workflows. Reported methods include calculat-
ing  the  variance  of  density  distributions  between  unknown
structures  and the target  structure  as  well  as  utilizing neural
networks  for  the  classification  and  identification  of  density
distributions formed by each polymer species.[25,26] However,
the former method suffers from the issue of a narrow identifi-
cation  range,  while  the  latter  approach  requires  modifying
and retraining the neural network model after each change to
the  candidate  phase  library.  This  leads  to  time-consuming
procedures,  limited  scalability,  and  high  computational  de-
mands. Moreover, the complexity of neural networks increas-
es  when  dealing  with  the  variability  in  the  degree  of  fuzzi-
ness of interfaces in the ordered phases due to changes of in-
teraction parameters, often limiting their applicability to high

 scenarios.
In this study, we present a novel scattering-based automat-

ed  identification  strategy  (SAIS)  for  the  characterization  and
identification of ordered phases in a single unit cell under pe-
riodic  boundary  conditions  based on their  unique scattering
patterns. The distinguishing feature of our approach lies in its
capacity to handle a wide range of ordered phases within an
extensive  parameter  space,  while  delivering  rapid  and  pre-
cise  identification  results  with  minimal  computational  re-
quirements. Moreover, our strategy not only characterizes the
phases but also extracts essential information for recognition,
enabling real-time expansion and improvement to the candi-
date phase library. It should be noted that our SAIS is special-
ly  designed  for  automating  simulation  studies  where  both
density  distributions  within  a  single  unit  cell  and  associated
lattice parameters are available beforehand. Thus, it is not ap-
plicable  to  identify  phase  structures  based  on  experimental
results such as scattering curves or images of crystalline struc-
tures where state-of-the-art methods already present.[27]

METHODS

d
N = ΠiNi Ni = ∣ai∣ /Δx

i = 1, 2, . . . , d Δx ai

D

To  demonstrate  our  strategy,  we  adopt  unit  cell  SCFT  calcula-
tions  to  generate  the  ordered  phases  for  analysis.  However,  It
should be noted that  our strategy is  not  limited to the density
distributions obtained from SCFT but applicable to any numeri-
cal  methods  that  can  produce  density  distribution  of  arbitrary
ordered phases in a single unit cell with periodic boundary con-
ditions.  The -dimensional  unit  cell  is  evenly  discretized  along
each  dimension  into  grid  points,  where 
for  and  is the spatial resolution. Here, ,  rep-
resented by column vectors, are the basis vectors of the unit cell.
The density distribution of each species is represented by an ar-
ray . Therefore, the discretized unit cell represents a one-peri-
od  sampling  of  the  periodic  ordered  structures.  While  we  take
3D unit  cell  as an example,  the formulation is  applicable to 1D
and 2D unit cells as well.

Our  aim  is  to  calculate  the  1D  scattering  pattern  of  an  or-
dered structure from its discrete density distribution in a sin-
gle  unit  cell.  According  to  the  scattering  theory,[28] the  scat-
tering intensity of a perfect crystal is given by:

I(q) = ∣F(q)∣2δ(q − qhkl) (1)

q ∣F(q)∣2
δ

q = qhkl = 2π(ha∗
1 + ka∗

2 + la∗
3) a∗

i

h, k, l
a∗
i

ai

where  is  the scattering vector,  is  the form factor of  a
unit cell, and  denotes the Kronecker delta function. The above
equation  implies  that  the  scattering  intensity  can  have  non-
zero  value  only  when  the  scattering  vector  satisfies  the  Laue
condition, i.e., ,  where  are ba-
sis vectors of the reciprocal lattice and  are integers known
as Miller indices.[29] Note that reciprocal basis vectors, , can be
computed from .[30]

qhklThe form factor of the unit cell evaluated only at  can be
expressed as:[28,31]

F(qhkl) = ∫
Ω

dr ρ(r)exp (−iqhkl ⋅ r) (2)

ρ(r)
Ω

ρ(r) bD b

where  is the density distribution of scattering length within
the unit cell,  and  denotes the domain of the unit cell.  In our
case,  is discretized into , where  is the scattering length
of  the  polymer  species.  Consequently,  the  form  factor  can  be
rewritten as:[31]

F(qhkl) = b
N
∑N1−1

n1=0
∑N2−1

n2=0
∑N3−1

n3=0
Dexp(−iqhkl ⋅ rn1n2n3

) (3)

rn1n2n3
=

n1

N1
a1 +

n2

N2
a2 +

n3

N3
a3 ni = 0, 1, . . . , Ni − 1(n1, n2, n3)where  with 

are the  position  vectors  of  each  grid point, ,  in  the
unit cell.

By  utilizing  the  relationship  between  the  basis  vectors  in
the real space and the reciprocal space,[29,30] Eq. (3) can be fur-
ther simplified into

F(qhkl) = b
N
∑N1−1

n1=0
∑N2−1

n2=0
∑N3−1

n3=0
Dexp [−i2π(n1h

N1
+

n2k
N2

+
n3l
N3

)]
(4)

D
D̂ F(qhkl) = bD̂

It  is  important  to  note  that  the  right-hand  side  is  nothing
but the 3D discrete Fourier transform (DFT) of the array ,[32]

usually  denoted  as .  Therefore, .  Finally,  the
scattering intensity can be calculated by the following equa-
tion:

I(qhkl) = b2∣D̂∣2 (5)

D̂where  can be efficiently computed via the fast Fourier trans-
form (FFT) algorithm.

q = ∣qhkl∣ = 2π∣M[h k l]T∣
M = [a∗

1 a∗
2 a∗

3]
q

qhkl

q
q

To  obtain  the  1D  scattering  pattern,  we  first  compute  the
length of each scattering vector using 
with  being  the  transformation  matrix  of  the
reciprocal  lattice.[14] We  then  group  all  Miller  indices  with
identical  values.  The  scattering  intensity  of  each  group  is
the  sum  of  intensities  corresponding  to  all  presented  in
the  group  as  computed  by  Eq.  (5).  Reflections  are  those
groups  with  intensities  higher  than  a  given  threshold  value,
otherwise  they  are  considered  as  extinctions.  Finally,  the  1D
scattering  pattern  is  represented  by  a  full  list  of  all  possible
Miller  indices  and  the  information  whether  they  are  reflec-
tions or extinctions, ordering by their  values. The power of
our  scattering  theory-based  approach  lies  in  the  fact  both 
values and their associated Miller indices are obtained simul-
taneously,  in  contrast  to  the  SAXS  experiments  where  pro-
cess  of  annotating  scattering  peaks  is  much  more  challeng-
ing.

q
It  should  be  noted  that  altering  lattice  constants  can  lead

to a change in the ordering of  values computed for  differ-
ent  Miller  indices.  Since  Miller  indices  only  depend  on  the
symmetry and space group of  specific  structures,  changes in
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the proportional lattice parameters do not alter the character-
istic  Miller  indices.  Therefore,  each  structure  possesses  its
unique  "standard  lattice  constants"  representing  the  ratio  of
lattice parameters. During the identification process, the stan-
dard  lattice  constants  are  employed  to  establish  a  fixed  se-
quence of Miller indices. Examples of the standard lattice con-
stants can be found in the section 1 of the electronic supple-
mentary information (ESI).

Another point to note is that, to distinguish between differ-
ent phases with the same symmetry in multi-species systems,
we  need  to  differentiate  between “structural  species” and
“background species” to obtain the density distribution used
for  calculations.  This  will  be  detailed  in  the “Multi-species
Block Copolymers” section later.

RESULTS AND DISCUSSION

In this study, we consider a wide range of candidate phases in-
cluding all stable ordered phases in two-species BCPs known to
date and some selected metastable phases, which are listed be-
low:

1.  One-dimensional  (1D)  ordered  phases:  asymmetrical
lamellae (LAMa), symmetrical lamellae (LAMs).

C4C4

C3C6

2.  Two-dimensional  (2D)  ordered  phases:  Square-packed
cylinders  (SPC,  No.10),  (No.10),[22] Hexagonally-packed
cylinders (HEX, No.17),  (No.17).[22]

O70

σ
3. Three-dimensional (3D) ordered phases:  (No.70),[33,34]

Perforated  layer  (PL  (No.123)  &  PL  (No.139)),[35]  phase
(No.136),[8,36] Hexagonal  close-packed spheres (HCP,  No.194),
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Fig. 1    Scattering patterns of six typical phases: (a) Double gyroid (DG), (b) Single gyroid (SG), (c) Double diamond (DD), (d) A15, (e) ,
(f) . Red represents species A (species B forming the matrix is not shown). For the sake of clarity, only the first 10 peaks are shown in
each  subplot.  In  (a-d),  the  abscissa  shows  the  relative  ratio  instead  of  absolute  values  for  a  clearer  visualization  and  comparison,
which is most appropriate for the cubic crystal system.
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Single  gyroid  (SG,  No.214),[33,37] Simple  cubic  (SC,  No.221),
CsCl  (No.221),[22] A15  (No.223),[9,20] Double  diamond  (DD,
No.224),[33,37] Face-centered  cubic  (FCC,  No.225),  NaCl
(No.225),[22] Body-centered  cubic  (BCC,  No.229),  Double  gy-
roid phase (DG, No.230).

σ O70
Fig.  1 shows  the  scattering  patterns  of  six  typical  phases:

DG,[33] SG,[37] DD,[33] A15,[20] ,[8] and .[34] These results are
consistent with previous experimental and theoretical obser-
vations.  Plots  of  the  remaining  phases  can  be  found  in  Figs.
S1−S9 in ESI. As can be seen, each phase obeys its unique re-
flection conditions in its scattering pattern. To facilitate SAIS,
we maintain a database of reflection conditions for each can-
didate  phase.  Hence,  during  SAIS  we  can  systematically  ex-
clude  candidate  phases  by  comparing  the  corresponding
Miller indices of each reflection and the remaining candidate
phase, if there is any, should be assigned to the test phase. A
detailed description of SAIS and related results are presented
in following sections.

First Stage of SAIS

q

q

Initially, the sample can be classified into one of the seven crys-
tal systems based on known lattice parameters: triclinic, mono-
clinic,  orthorhombic,  tetragonal,  trigonal,  hexagonal,  and
cubic,[29] significantly  narrowing  down  the  list  of  candidate
phases  to  be  considered.  Next,  we  compute  the  1D  scattering
patterns of the test phase and all possible candidate phases ac-
cording to Eq. (5). Then, a comparison of Miller indices between
the test phase and each candidate phase is performed in an as-
cending  order  of  values.  Whenever  a  mismatch  is  detected,
meaning  that  one  phase  exhibits  reflection  while  the  other
phase exhibits extinction at the same  or vice versa,  the corre-
sponding  candidate  phase  is  excluded  from  consideration.
Meanwhile, the Miller index of the first mismatch is recorded for
future reference.

q

q
Nt

In  practice,  due  to  the  significant  differences  in  reflection
conditions among various space groups, distinguishing them
only  requires  a  subset  of  the  reflection  conditions.  This  can
also help avoid accidental zeros (extinctions) that may arise at
high  values[38,39] (an  example  can  be  found  in  Fig.  S10  in
ESI).  Therefore,  it  is  important  to  choose  an  appropriate
threshold  for  the  number  of  values  to  be  compared.  The
threshold, ,  can  be  adjusted  based  on  the  specific  charac-

Nt

teristics  of  the  candidate  phases  being  analyzed,  allowing
users  to  fine-tune  this  criterion  based  on  their  specific  re-
quirements  and  knowledge  of  the  system  under  investiga-
tion. For example, setting  to 6 is sufficient to distinguish all
known stable ordered phases for two-species BCPs.

Nt = 6

Fig. 2 provides an example of applying SAIS to cubic phas-
es  where  the  test  phase  is  A15.  The  absence  of  (100)  reflec-
tion excludes five candidate phases and the presence of (110)
reflection  excludes  another  two  more.  DD,  SG  and  BCC  are
further excluded after the comparison of the (111), (200) and
(210)  reflections,  respectively.  Only  A15  survives  after  the
comparison  of  first  five  Miller  indices.  As  the  number  of
matches,  which  is  at  least  12  shown  in Fig.  2,  exceeds  the
threshold  ( ),  the  test  phase  is  identified  as  A15  as  ex-
pected.

For  non-cubic  crystal  systems,  the matching process  is  ex-
pected  to  be  much  easier  since  there  are  fewer  candidate
phases  to  be  compared. Fig.  3 presents  an  example  of  the
identification  of  the  HCP  phase  in  the  orthorhombic  crystal
system. Both HCP and HEX phases are computed in a conven-
tional hexagonal unit  cell.  As can be seen, all  possible candi-
date phases exhibit quite divergent scattering patterns, lead-
ing  to  quick  exclusion  of  incorrect  phases.  Note  that  both
LAM and HEX can orientate towards either basis vector of the
unit cell. The zero in the Miller index suffixed to the phase in-
dicates the orientation of a low-dimensional phase. For exam-
ple,  the direction of  the cylinders  in HEX(hk0)  phase and the
normal direction of the layers in LAM(00l) are both parallel to
the vector (00l).

Second Stage of SAIS

q

Nt

Nt

Nt

q

Through  the  first  stage,  candidate  phases  are  systematically
eliminated  by  comparing  every  Miller  index  in  the  order  of 
values, narrowing down the range of search, and ensuring that
erroneous  reflections  are  absent  in  the  test  phase.  However,
when  exploring  completely  new  and  unknown  BCP  systems,
due to  the complexity  of  possible  ordered phases,  may be-
come  either  too  small  or  too  large.  If  is  too  small,  multiple
candidate phases may be left after the first stage of SAIS,  mak-
ing the situation ambiguous. On the other hand, a large  may
mistakenly remove the correct candidate phase due to acciden-
tal extinctions in the high-  region.
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Fig. 2    The matching of reflections and extinctions by the sequence of Miller indices during the first stage of SAIS. The test phase is A15.
The  left  most  column  lists  the  test  phase  and  all  candidate  cubic  phases,  while  the  top  row  displays  Miller  indices  arranged  in  the
ascending order of  value. The PL (No.123) and three low-dimensional phases (SPC, LAMa and LAMs) are also considered because they
are  also  possible  in  the  cubic  lattice.  Red  and  green  cells  indicate  the  presence  of  reflections  of  unidentified  and  candidate  phases,
respectively. Note that for cubic crystal systems, the Miller indices ( ) are permutable.[39]
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ε

To circumvent  above difficulties,  a  second stage of  SAIS  is
introduced to validate and refine the results obtained by the
first  stage.  In this stage,  a residual value ( )  between scatter-
ing  patterns  of  the  test  phase  and  each  candidate  phase  is
computed according to

ε = 1
Nq

√
∑Nq

i=1
∣v−1

i − u−1
i ∣2 (6)

v u
q
Nq

Nx Nq

Nx

q q

where,  and  represent the scattering patterns (the sequence
of )  of  the  candidate  phase  and  the  test  phase,  respectively,
and  denotes the number of reflections. If the total number of
reflections, denoted as , in a particular phase is lower than ,
then  is used for calculation instead. To emphasize the impor-
tance  of  smaller  values,  we  use  the  reciprocal  of ,  which  is
equivalent  to  the  distance  between  two  neighboring  lattice
planes,  to measure the distance of  two vectors  instead of  con-
ventional mean squared error.

ε

Nt

Nt

ε

In  the  second  stage  of  SAIS,  the  candidate  phase  giving
lowest  is of most interest. If the first stage of SAIS assigns a
candidate phase to the test phase, the second stage confirms
such identification if the residual for that phase is indeed the
lowest. Otherwise, the identification made by the first stage is
in doubt, implying that a bad  is chosen. However, this sce-
nario should rarely occur for a sufficiently large . Indeed, we
have never  encountered such case  throughout  this  study.  In
the  case  of  multiple  phases  left  after  the  first  stage  of  SAIS,
the  one  with  lowest  is  chosen  as  the  phase  for  the  test
phase which resolves the ambiguous issue.

Nt

q q

ε

For the case when no candidate phase is left after the first
stage of SAIS, two scenarios are possible: the correct phase is
accidentally  removed  or  the  test  phase  is  actually  a  new
phase which is not presented in the candidate library. The for-
mer  scenario  occurs  when  is  too  large  and  accidental  ex-
tinctions cause the failure of the first stage of SAIS. In this sce-
nario,  the  sequence  is  a  subset  of  the  perfect  sequence
without  accidental  extinctions.  The  correct  result  can  still  be
obtained through the second stage of SAIS because the  of a
phase  with  accidental  extinctions  is  still  significantly  smaller
than  that  of  other  phases.  An  example  of  accidental  extinc-
tions can be found in Fig. S10 (ESI). Further verification can be

q
done  by  checking  whether  the  Miller  index  of  the  first  mis-
match  lies  in  the  high-  region.  For  the  later  scenario,  SAIS
can automatically incorporate such new phase into the candi-
date structure library to identify its later occurrences. And by
utilizing explicit  lattice  parameters  and reflection conditions,
users  can  determine  its  corresponding  space  group  by  con-
sulting reference tables.[39]

fA
a χN

χN

To demonstrate the robustness of the second stage of SAIS,
we  perform  tests  by  varying  three  typical  physical  para-
meters: the volume fraction of the species A ( ), lattice para-
meters ( ), and the Flory-Huggins interaction parameter ( ).
Changes in these parameters lead to variations in the sizes of
phase-separated  domains,  the  number  of  sampling  points,
and the interface between A-rich and B-rich domains.  An in-
crease in the  parameter results in a sharper interface, caus-
ing  a  transition  from  diffuse  to  well-defined  boundaries  be-
tween individual domains.[6] These variations present notable
challenges  for  image  classification  techniques  that  rely  on
neural networks, necessitating larger and more intricate mod-
els.[40,41] In contrast, our scattering theory-based approach ef-
fectively  addresses  these  challenges.  A  more  detailed  com-
parison will be given in a later section.

fA χN
a

Fig. 4 presents the residuals as a function of various param-
eters used to generate 18 samples (12 for the  and , 6 for

), all of which are different from the standard phases stored
in the candidate phase library.  The phase region from which
the  parameters  are  selected  is  illustrated  in  left  column  of
subplots,  with  the  phase  diagram  reproduced  from
reference.[17] Note  that  these  ordered  phases  can  be  either
stable or metastable depending on where they are located in
the phase diagram. As can be seen, the lowest residuals corre-
spond to BCC, DG and FCC in Figs. 4(a), 4(b) and 4(c), respec-
tively, confirming the identification results of the first stage of
SAIS. This indicates that our approach is capable of effectively
handling a wide range of parameters to provide reliable iden-
tification results.

Multi-species Block Copolymers
To extend SAIS to multi-species BCPs, it is necessary to address
the  challenge  of  distinguishing  distinct  ordered  structures
formed by  different  species  that  share  identical  scattering pat-
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  Zhang, Y. C. et al. / Chinese J. Polym. Sci. 2024, 42, 683–692 687

 
https://doi.org/10.1007/s10118-024-3084-x

 

https://doi.org/10.1007/s10118-024-3084-x
https://doi.org/10.1007/s10118-024-3084-x
https://doi.org/10.1007/s10118-024-3084-x
https://doi.org/10.1007/s10118-024-3084-x
https://doi.org/10.1007/s10118-024-3084-x
https://doi.org/10.1007/s10118-024-3084-x
https://doi.org/10.1007/s10118-024-3084-x


SCA

SCC CsCl
CsCl

FCCA FCCC

NaCl SPC C4C4

SCA SCC

CsCl

terns in the sense of ignoring differences in peak intensities. For
instance, in the case of ABC-type BCPs, phases such as a simple
cubic  phase  formed  by  species  A  ( ),  a  simple  cubic  phase
formed by species C ( ), and a phase formed by species
A and C ( ) are indistinguishable using SAIS alone. Similar sit-
uations can also arise in the comparison among , , &

, and in the comparison between & . To properly
identify these phases, it is crucial to find a reliable way to differ-
entiate the "background" species from the species forming mi-
nor  domains  (referred  to  as  "structural"  species).  In  the  above
example,  the background species  are  quite  different:  species  B
and C for the  phase, species A and B for the phase, and
species B for the  phase.  Thus,  the accurate determination
of the background species is essential for effectively discerning
these distinct structures.

X ∈ {A, B,C}Here,  we  propose  a  variance-like  quantity  to  capture  the
background  species.  For  each  species, ,  the  vari-
ance can be computed using the equation

vX = ∑
i∈I∗

(DX,i

D̄X
− 1)2

(7)

I∗

DX,i > D̄X D̄X =
1
N
∑N

i=1
DX,i

SCA SCC CsCl FCCA FCCC

NaCl SPC C4C4

vX

where denotes a collection of  grid points whose density ex-

ceed  the  mean  value, i.e.,  with .  As

shown in Fig.  5,  the variance of  the structural  species is  signifi-
cantly higher than those of the background species. The corre-
sponding  scattering  patterns  of , , , , ,

,  and formed by ABC-type BCPs can be found in
Figs.  S11−S18 in ESI.  In practice,  we can set a proper threshold
value for , below which the species is considered as the back-
ground.

BCCA BCCB

bX X ∈ {A, B,C, . . . }

The variance-like criterion is particularly important for auto-
mated identification of a multi-species system. In the case of
AB-type  BCPs,  this  information  serves  as  an  additional  para-
meter that aids in distinguishing phases like and .
After determining the background species, scattering lengths,

, ,  are  assigned  to  each  individual  species.
In  general,  the  scattering  length  of  the  background  species
can  be  set  to  zero,  and  the  scattering  lengths  of  individual
structural  species  can  be  adjusted  according  to  specific  re-
quirements.

Finally,  the  individual  density  distributions  are  combined
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D = ∑X bXDXinto a single density distribution, ,  which is then
used as input for SAIS. This treatment effectively captures the
inherent  structural  characteristics  of  multi-species  systems
and enables the identification of complex phases.

Imperfect Ordered Structures
In  unit  cell  SCFT  calculations,  structures  with  "crystallographic
defects", such as point defects, line defects, and planar defects,
are  impossible  to  appear  in  theory.[14] Due  to  the  periodic
boundary conditions employed in unit cell calculations, any re-
sulted  structure  is  inherently  periodic,  including  the  "defects"
that cause deviations from a perfect structure. Since these peri-
odic  results  do  not  contain  conventional  crystallographic  de-
fects  that  typically  occur  at  random  positions,  they  can  still  be
considered  as  "perfect  crystals".  Therefore,  in  this  context,  "de-
fect-free" refers to the absence of conventional crystallographic
defects  that  typically  occur  randomly  and  disrupt  the  overall
structure.  And  the  term  "defect"  refers  to  structural  deviations
that  occur  periodically  but  do  not  adhere  to  the  symmetry  re-
quirements specified by a space group. In the subsequent sec-
tions, we refer to this type of structures as distorted structures.

Two  types  of  imperfect  structures  are  commonly  encoun-
tered: defect-free but non-symmetrical structures and distort-
ed structures. The former refers to the case where domains of
interest, i.e.,  motifs,  do not  position at  crystal  lattice point  as
one  usually  does  in  crystallography.  Non-symmetrical  struc-
tures  often  emerge  due  to  the  periodic  boundary  condition
imposed  in  numerical  simulations  which  allows  translating
the  ordered  structure  along  basis  vectors  by  any  amount.

Such  non-symmetrical  density  distribution  within  a  unit  cell
may introduce extra difficulty into identification methods re-
lying  on  visualization  or  image  recognition  techniques.  In
contrast,  our  scattering-based  approach  is  naturally  immune
to  translation  since  the  Fourier  transform  of  periodic  func-
tions is not affected by translation.

To validate this assertion,  we perform random translations
of the density distributions of FCC and A15 phases and utilize
SAIS to identify them. As shown in Fig. S19 in ESI, the scatter-
ing  patterns  of  translated  structures  undergo  negligible
changes,  resulting  in  the  accurate  identification  of  these
translated structures.

N(μ=1.0, σ=0.1)

In  addition,  SAIS  are  capable  of  handling  noise-mediated
structures and distorted structures. Although the density dis-
tributions calculated by the unit cell SCFT is free of any noise,
such  situations  may  arise  in  molecular  dynamic  simulations
due to  thermal  fluctuations.[42] To  demonstrate  the ability  of
SAIS in identifying noise-mediate structures, we randomly se-
lected  10%  of  the  data  points  from  the  density  distribution
and multiply  them with a  Gaussian noise .  A
slightly larger threshold of the scattering intensity is set to fil-
ter out extinctions. As demonstrated in Fig. S20 (in ESI),  scat-
tering patterns for various noise-mediated structures are con-
sistent with those of noise-free structures. Therefore, they can
be correctly identified by SAIS.

χN

Distorted structures are difficult to distinguish visually and
often  exhibit  excess  reflections  which  do  not  belong  to  the
original  space  group.  This  situation  frequently  occurs  in  the
vicinity  of  phase  boundaries.  The  free  energy  of  distorted
structures  is  often  higher  than  that  of  normal  structures,
thereby  introducing  further  uncertainty  into  calculation  of
phase  diagrams.  Taking  the  identification  of  distorted  BCC
phases as an example, due to the difference between sizes of
the spheres on the corner and that on the center of the unit
cell,  the rule of translation symmetry is  broken and these or-
dered structures,  in  a  strict  manner,  are  no longer  belong to
BCC.  These  distorted  structures  and  their  scattering  patterns
are  shown  in Figs.  6(b)−6(d).  SAIS  identifies  them  as  new
phases  due to  the  mismatch of  the  reflection  conditions  be-
tween these structures and all candidate phases. Similar situa-
tions may also arise when varying parameter  for FCC phas-
es (Figs. 6e and 6f). These kinds of distorted structures are dif-
ficult to distinguish via identification methods based on neu-
ral network models that are built on top of image recognition
since these neural network models typically are not aware of
the  crystallographic  nature  of  density  distributions  within  a
unit cell. The early detection of defects in the target structure
can effectively reduce the time requirement for  the determi-
nation of phase boundaries.

Comparison with Existing Methods

f χN

Existing methods for automatic phase recognition include den-
sity-variance-based  calculation[25] and  machine  learning  meth-
ods  relying  on  image  recognition  neural  networks.[26] The  for-
mer method has been proven to be efficient  in  measuring the
distance between certain predicted and target structure,  but it
suffers  from  poor  robustness  and  works  only  in  a  very  limited
range  of  parameters.  For  instance,  the  changes  in ,  and
translation  of  the  structure  easily  leads  to  failures  of  this
method, as demonstrated in Fig. S21 (in ESI).

As mentioned earlier, the change in the interface between
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individual  domains  poses  serious  challenges  for  machine
learning  methods  relying  on  image  recognition  neural  net-
works.  For  example,  according  to  Dong et  al.,[26] most  errors
occur  in  the  distinction  between  the  phase  formed  by
species  A  and  C,  and  the  phase  formed  by  species  C
alone.  Furthermore,  as  the  volume  fraction  of  species  C  de-
creases,  the  probability  of  misidentification increases.  Within
a  specific  parameter  space  ( ),  the
machine learning method frequently ignores the presence of
the A domain due to its small volume fraction, resulting in the
misclassification of  as .

Using  SAIS,  the  given  situation  is  analogous  to  identifica-
tion  of  distinct  phases  with  identical  scattering  patterns  as
previously  mentioned.  The  scattering  patterns  can  be  found
in  the  Supporting  Information  (Fig.  S22  in  ESI).  As  illustrated
in Fig.  7,  it  can  be  seen  that  the  variance  of  the  structural

species  remains  significantly  larger  than  the  variance  of  the
background  species.  After  accurate  identification  of  both
structural  and  background  species,  SAIS  effectively  circum-
vents  potential  misjudgments  and  successfully  identifies
these two phases.

CONCLUSIONS

In  conclusion,  our  proposed  two-stage  strategy,  SAIS,  for  per-
forming automated phase identification of SCFT results utilizing
scattering patterns of various ordered phases,  offers significant
advantages over existing solutions. By leveraging the scattering
theory  and  utilizing  efficient  FFT  techniques,  our  approach
achieves reduced computational  requirements while providing
accurate and scalable phase recognition.

The first stage of SAIS relies on comparing reflection condi-
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Fig.  6    Scattering  patterns  of  standard  BCC  phase  (a),  distorted  BCC  phases  (b−d),  standard  FCC  phase  (e),  distorted  FCC  phase  (f).
(a) . (b) , (c) ,  (d) , (e) , (f) .  The red arrows indicate excess reflections that should
have been extinctions.
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tions  at  given  Miller  indices,  enabling  efficient  and  accurate
identification of  known phases.  The second stage of  SAIS  in-
troduces  a  special  tailored  residual  between  the  test  phase
and each phase  in  the  candidate  phase  library,  which serves
as a tool to aid the identification process. Once the scattering
pattern of a new phase is computed, they can be convenient-
ly incorporated into the candidate phase library for future ref-
erence.  This  allows  for  continuous  expansion  and  improve-
ment  of  the  candidate  phase  library  by  incorporating  new
phases. Additionally, by employing a variance-like criterion to
distinguish  background  species,  SAIS  can  be  extended  to
multi-species BCP systems, further expanding its range of ap-
plications.

Our lightweight approach can be easily integrated into ex-
isting  research  workflows  that  involve  unit  cell  calculations,
serving  as  an  automated  phase  identification  module  with
negligible  computational  overhead.  Through  precise  auto-
mated identification,  the free energies of  all  candidate phas-
es at each point in the parameter space can be computed au-
tomatically  and reliably,  consisting of  an essential  procedure
for the automated construction of phase diagrams. The flexi-
bility  of  online  updates  and  adjustments  to  the  candidate
phase library enables efficient and automated exploration of
a  wide  parameter  space,  facilitating  the  discovery  of  new
phases.  With  the  assistance  of  the  SAIS,  programs  have  the
capacity to initiate the construction of the candidate phase li-
brary  from  scratch,  continuously  identifying  and  expanding
this  library  to  capture every  phase that  may emerge.  We an-
ticipate  that  our  automated  identification  strategy  will  be-
come  a  fundamental  tool  for  the  simulation  studies  of  or-
dered phases of BCPs.
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The variance of the structural species (A and C) remains significantly
larger than that of the background species.
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