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Abstract   Multi-component polymer systems exhibit exceptional versatility and structural diversity, making them indispensable in the polymer

industry as well as in advanced and high performance applications. However, constructing accurate phase diagrams for these systems remains

challenging due to inhomogeneous structures arising from the introduction of block copolymer components.  Here,  we present a unified and

model-agnostic framework for computing phase equilibria in multi-component polymeric systems based on the concept of “effective chemical

potential”. This approach directly connects key thermodynamic variables in the canonical ensemble to other ensembles, unifying phase coexis-

tence determination without requiring the reformulation of self-consistent field theory (SCFT) calculations across different ensembles. By decou-

pling phase equilibrium determination from specific ensemble formulations, our approach enables the reuse of existing SCFT solvers. Moreover,

it provides a useful framework to develop highly efficient phase equilibrium solvers for multi-component polymer systems.
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INTRODUCTION

Multi-component  polymeric  systems  have  attracted  significant
attention  due  to  their  remarkable  tunability  and  structural  di-
versity, which far exceed those of neat polymers.[1–4] By incorpo-
rating  multiple  components,  these  systems  enable  the  forma-
tion of novel stable and metastable phases, as well as regions of
multiphase coexistence.[5–8] These phase structures find applica-
tions  in  diverse  fields,  including  biodegradable  materials,[9,10]

thermoplastic  elastomers,[11–13] semiconductor  film
formation,[14,15] optoelectronics,[16–18] and  lithography.[19,20] As
industries[21,22] increasingly  rely  on  multi-component  systems
for  high-performance materials,  understanding and controlling
their  phase  behavior  is  critical.  For  instance,  precise  control  of
phase  behavior  in  semiconductor  films  can  significantly  en-
hance material performance and processing efficiency.[23–26]

Tailoring compositions to stabilize desired phases remains
a key challenge. While neat block copolymers often face syn-
thetic  constraints  on  chain  architectures,  multi-component
systems  allow  for  more  intricate  structural  arrangements
through compositional  tuning.[27,28] For  example,  adding ho-
mopolymers to a diblock copolymer system induces complex
arrangements  of  spherical  domains  such  as  C14  and  C15
phases,[29–31] which  are  difficult  to  stabilize  in  neat  diblock

copolymers.  Furthermore,  multiblock  copolymer  blends  ex-
pand the possibilities for generating sophisticated phases, in-
cluding  binary  mesocrystals  and  hybrid  morphologies,  thus
providing an ideal platform for engineering of functional ma-
terials.[32–34]

Accurate  phase  diagrams  are  crucial  for  guiding  composi-
tion  selection  to  achieve  desired  phases.[35] However,  con-
structing  these  diagrams  involves  managing  complex  ther-
modynamic  variables,  such  as  concentrations,  chemical  po-
tentials,  and free energies,  which pose significant  challenges
in high-dimensional parameter spaces.[36] Identifying stability
windows requires expertise and significant effort in both the-
oretical[37–39] and experimental studies.[27,28]

Canonical ensemble (CE)-based methods, such as the dou-
ble-tangent  construction[35] are  widely  recognized  for  their
simplicity and stability.  However,  such an approach often re-
quires extensive computational resources for free energy cal-
culations, making it suitable for demonstration purposes only.
In  a  more  recent  development,  Matsen[40] reformulated  the
self-consistent  field  theory  (SCFT)  in  the  grand canonical  en-
semble (GCE) instead of the CE used by the original formula-
tion. In the GCE, the phase coexistence can be trivially deter-
mined by simply equating the grand canonical  free energies
between candidate phases. However, as the control variables
in the GCE are chemical potentials which relate to the compo-
sition in a non-intuitive way, it suffers from stability issues due
to  difficulties  in  selecting  suitable  initial  values  for  chemical
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potentials. To address this, Matsen[41] later proposed a hybrid
CE-GCE method, where initial values are first computed in CE
and  then  fed  into  GCE  calculations.  Despite  reducing  initial-
ization  challenges,  this  method  discards  data  gathered  from
CE calculations, leading to significant waste of computational
resources.

More recently,  Mester,  Lynd and Fredrickson[42] developed
a new method for computing phase diagrams of binary poly-
mer  blends based on the Gibbs ensemble (GE)  SCFT calcula-
tions.  They  considered  the  phase  equilibrium  problem  as  an
optimization  problem  in  Gibbs  ensemble,  which  is  then
solved by a conjugate gradient solver. It is demonstrated that
the GE method enjoys the universally convergent property in-
herited  from  the  conjugate  gradient  solver  and  converges
even when the initial  values  are  far  from the actual  solution.
However,  one  drawback  of  the  Gibbs  approach  is  that  every
time the architecture of either component in polymer blends
changes, the full set of equations has to be re-derived and the
associated  numerical  algorithm  should  be  reimplemented.
Unfortunately,  the  existing  canonical  SCFT  implementations
cannot  be  reused  due  to  the  built-in  entanglement  of  SCFT
calculation and phase coexistence determination logic in the
GE approach.

For ternary and higher-component systems,  the complexi-
ty of phase equilibrium calculations increases substantially. In
CE,  free  energy  landscapes  expand  from  one-dimensional
curves to multidimensional hypersurfaces, requiring the iden-
tification  of  a  common  tangent  hyperplane  across  multiple
hypersurfaces to determine phase coexistence.  This  geomet-
rical  complexity  is  further  exacerbated  in  GCE,  where  phase
coexistence is determined by identifying a common intersec-
tion  among  multiple  free  energy  curves.  These  tasks  require
extensive  computational  resources  due  to  the  high-dimen-
sional  nature  of  the  parameter  space  and  necessitate  robust
optimization algorithms to achieve accurate results.

Several  methods  have  been  proposed  to  address  these
challenges.  For  example,  Park,  Bates  and  Dorfman[43] devel-
oped a GCE-based approach for ternary systems by fixing the
chemical  potential  of  one component at zero and systemati-
cally varying the remaining two chemical potentials to locate
phase  coexistence  points.  Although  doable  in  principle,  this
method is computationally intensive, as the parameter space
for chemical potentials ranges from negative to positive infin-
ity.  Moreover,  the initialization of  appropriate starting values
remains  a  significant  challenge,  often  leading  to  conver-
gence  instability.  As  another  example,  Xie  and  Shi[44] intro-
duced  a  semi-grand  canonical  ensemble  (semi-GCE)  ap-
proach  for  the  AB/C/D  ternary  polymer  blend,  transforming
three  chemical  potential  variables  into  two  chemical  poten-
tials variables and one volume fraction variable. This transfor-
mation  makes  it  more  manageable  compared  to  using  un-
bounded  chemical  potential  variables.  However,  both  the
GCE  and  semi-GCE  approaches  are  heavily  coupled  with  the
underlying SCFT calculations required for free energy calcula-
tions.  Adapting  SCFT  to  operate  within  these  ensembles  re-
quires substantial reformulation, thereby limiting the scalabil-
ity  of  these  methods.  Furthermore,  consistently  extending
these  frameworks  to  systems  with  an  arbitrary  number  of
components is rarely explored.

Despite the progress made by various methods, current ap-
proaches  for  determining  phase  equilibria  in  polymer  blend
systems often exhibit fragmentation in their treatment of key
thermodynamic  variables  like  free  energy,  volume  fractions,
and  chemical  potentials.  For  instance,  Matsen's  formulation
embeds chemical potentials within SCFT in a tightly coupled
manner,[41] which  complicates  both  conceptual  understand-
ing  and  extension  to  multi-component  systems.  Similarly,
phase  equilibrium  methods  developed  by  Dorfman[43] and
Shi[44] for  ternary  blends  are  also  deeply  coupled  with  SCFT,
restricting their applicability to arbitrary component systems.

In  this  study,  we present  a  unified approach for  determin-
ing phase equilibrium in  multi-component  systems by lever-
aging  the  concept  of “effective  chemical  potential”.  Our  ap-
proach  directly  connects  key  thermodynamic  variables  in  CE
to  other  ensembles,  such  as  GCE  and  GE,  thereby  allowing
these  variables  to  be  calculated  exclusively  in  CE.  Conse-
quently,  subsequent  phase  equilibrium  calculations  can  be
carried out in any ensemble, which unifies the determination
of  phase  equilibrium  across  all  previously  mentioned  ap-
proaches. Our approach not only provides a consistent frame-
work  for  developing  various  phase  coexistence  solvers
through  a  concise  and  generalized  formulation,  but  also  en-
hances  compatibility  with  existing  theoretical  frameworks,
such  as  Flory-Huggins  theory  and  various  phase  field-based
simulations.  It  allows  for  applications  to  multi-component
systems of  arbitrary  complexity.  Furthermore,  by  decoupling
the  phase  equilibrium  calculation  process  from  specific  en-
semble formulations used in free energy calculations, our ap-
proach  allows  for  the  exploration  of  novel  free  energy  mod-
els.

GENERAL FORMULATION

nc ≥ 2
nφ ≥ 2

np

p ∈ {1, 2,⋯, nc}

In this section, we introduce a general formulation of the coexis-
tence  condition  for  polymer  blends  with   components
and   phases. The chemical potential is defined as the first-
order  derivative  of  the  free  energy  in  the canonical  ensemble
(CE) with respect to  being the number of particles of compo-
nent   ,

μp = ( ∂F
∂np

)
Ip

(1)

Ip = {ni ∣ i = 1, 2,⋯, nc, i ≠ p}
p

where  is  a  set  of  number  vari-
ables for components other than .

p μφp
φ ∈ {α, β,⋯, ζ} μα

p = μβ
p = ⋯ = μζ

p

p q(p ≠ q)
μα
p − μα

q = μβ
p − μβ

q = ⋯ = μζ
p − μζ

q

p
r

At  the  equilibrium  state,  the  chemical  potential  of  each
component , ,  is  equal  in  each  coexisting  phases

, .  It  follows  that  subtracting

the  chemical  potentials  of  any  two  components  and 
 between any pair of coexisting phases remains equal,

.  Based  on  this  relation,  it  is

natural to define an “effective chemical potential” for compo-
nent  by  choosing  the  chemical  potential  of  a  reference
component (e.g., component ),

μ̃p ≡ μp − μr (2)

0 μ̃r = 0

The physical meaning of this quantity will be clarified later.
Clearly, the effective chemical potential of the reference com-
ponent  itself  is , i.e., .  Without  loss  of  generality,  in
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r = nc

practice we can choose the last  component as  the reference
such that .

F̃(ϕ1, ϕ2,⋯, ϕnc
) = 1

nF(n1, n2,⋯, nnc
) ϕp

p − th n = ∑nc

p=1
np

F̃ nc

nc − 1

∑nc

p=1
ϕp = 1

In practice,  it  can be more convenient to use volume frac-
tions instead of moles as independent variables. The free en-
ergy of  the system as a function of volume fractions is  given

by, ,  where  is  the  vol-

ume fraction of the  component and  is the

total number of moles of all components in the system. Note
that  is  intentionally  written  as  a  function  of  all  volume
fractions,  despite  the  fact  that  only  of  them  are  inde-
pendent  due  to  the  mass  conservation  constraint

.

F̃(ϕ1, ϕ2,⋯, ϕnc
)

1
nF(n1, n2,⋯, nnc

) ∂ϕp
∂np

=
1 − ϕp

n
∂ϕq
∂np

= −
ϕq
n

p ≠ q p

μp = F̃ + ( ∂F̃
∂ϕp

)̃
Ip

−∑nc

q=1
( ∂F̃
∂ϕq

)̃
Iq

ϕq

Ĩp = {ϕi ∣ i = 1, 2, . . . , nc, i ≠ p}
p Ip

nc

Combining Eq. (1) with the above relations =

 and  utilizing  and 

for , the chemical potential of component  can also be

expressed  as,[45] ,  where

 is  a set  of  volume fraction vari-
ables  of  components  other  than  component  similar  to .
For clarity, it is assumed that all segments of different kinds of
monomers  have  identical  volume.  And  the  derivatives  are
taken  without  considering  the  mass  constraint.  In  other
words, all  volume fractions are treated as if they are "inde-
pendent".

μp

μ̃p

By substituting the expression for  from the previous for-
mula  into  the  definition  of  the  effective  chemical  potentials

 in Eq. (2), we arrive at another expression for the effective
chemical potential,

μ̃p = ( ∂F̃
∂ϕp

)̃
Ip

− ( ∂F̃
∂ϕr

)̃
Ir

(3)

It is helpful to introduce the following quantity,

γp ≡ ( ∂F̃
∂ϕp

)̃
Ip

(4)

μ̃p = γp − γr γp
so  that  we  can  express  Eq.  (3)  in  a  more  concise  form:

.  is the essential quantity to compute as it simpli-
fies the computation of the chemical potential.

Besides serving as a convenient computing vehicle for the
effective chemical potential, Eq. (3) also provides a way to un-
derstand its physical essence. To illustrate this, we first rewrite
the right-hand side of Eq. (3),

( ∂F̃
∂ϕp

)̃
Ip

− ( ∂F̃
∂ϕr

)̃
Ir

= ( ∂F̃
∂ϕp

)̃
Ip

∂ϕp
∂ϕp

+ ( ∂F̃
∂ϕr

)̃
Ir

∂ϕr
∂ϕp

(5)

F̃
ϕp ϕp ϕr
which is equivalent to the partial derivative of  with respect to

, allowing both  and  to vary. Consequently,

μ̃p = ( ∂F̃
∂ϕp

)̃
Jp

(6)

J̃p = {ϕi ∣ i = 1, 2, . . . , nc, i ≠ p, r}
p r

where  is  a  set  of  volume  frac-
tion variables of components other than  and . Clearly, Eq. (6)
has a form similar to Eq. (1). Thus, the effective chemical poten-
tial shares a similar meaning with the bare chemical potential: it

nc − 1
ϕr
μ̃p

ϕp

is  the “chemical  potential” by  taking  the  volume  frac-
tions (excluding ) as independent variables. From a geometri-
cal  point  of  view,  is  the slope of  the tangent hyperplane of
the free-energy hyper-surface along the direction of the  co-
ordinate.

Remarkably, in terms of the effective chemical potentials, it
can  be  shown  that  the  equilibrium  coexistence  condition
within CE follows a similar set of equations to the bare chemi-
cal potential formulation,[35]⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

μ̃α
p = μ̃β

p = ⋯ = μ̃ζ
p = μ̃p

F̃φ1 − F̃φ2 =
nc

∑
p=1,p≠r

(ϕφ1
p − ϕφ2

p )μ̃p
(7)

p∈{i ∣ i = 1, 2,⋯, nc, i ≠ r} (φ1, φ2)∈{(i, j) ∣ i, j =
α, β,⋯, ζ, i ≠ j}

F̃φ1 F̃φ2 nc − 1
F̃(ϕ)

nc − 2

∑nc

i=1
ϕp = 1 nc

In  the  above  equations,  it  is  understood  that  each
 and each pair of 

 should be applied to Eq. (7). As a consequence,
the  above  equilibrium  conditions  can  only  be  satisfied  by  a
common tangent hyperplane to ,  surfaces in the 
dimensional space. If the analytical form of  is known, the
most straightforward way to calculate the two-phase equilib-
ria is treating the equilibrium conditions as a set of nonlinear
equations and solving them with a nonlinear solver, which is
equivalent  to  construct  the  common  tangent  hyperplane  to
the free energy density surfaces. In general,  the solution of a
two-phase  equilibria  problem  is  an  dimensional  sur-

face  embedded  in  the  hyperplane, ,  of  an  di-

mensional space. In particular, they are a pair of points and a
curve  for  binary  and  ternary  systems,  respectively.  A  typical
common  tangent  curve  for  a  binary  system  is  illustrated  in
Fig. 1.

If necessary, it is also straightforward to convert the CE free
energy to GCE free energy through a Legendre transform,[46]

F̃g = F̃ −
nc

∑
p=1, p≠r

μ̃pϕp (8)

μ̃p
ϕp

Here,  is the chemical potential corresponding to the volume
fractions  at .  Consequently,  the  equilibrium  condition  is  re-
placed by a much simpler form,

F̃αg = F̃βg = ⋯ = F̃ζg (9)

F̃g

μ̃p ϕp
μ̃p(ϕp)

F̃g F̃

In  practice,  the phase equilibria  can be calculated by find-
ing the intersection of  surfaces for  all  phases.  Particularly,
for  the  two-phase  coexistence  with  a  binary  system,  there  is
only  one  free  variable.  Thus  a  root-finding  algorithm  can  be
readily applied to find the intersection. The resulting solution,

 is  then  converted  to  the  desired  volume  fractions ,
through  inverting  the  mapping .  Based  on  the  above
formulation, we would like to point out that the GCE free en-
ergy  can be computed from the CE free energy  without
performing any additional computations in GCE. For more de-
tailed  derivations  for  the  two-component  and  three-compo-
nent systems can be found in the Section 1 of the electronic
supplementary information (ESI).

The CE free energy can also be converted to the Gibbs en-
semble free energy,

G = ναF̃ α + ν βF̃ β (10)

which is optimized to obtain phase equilibrium as below,
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minϕαp ,ϕ
β
p
G(ϕα

p, ϕ
β
p)

s.t. 0 < ϕα
p < 1, 0 < ϕβ

p < 1
(11)

α β
να νβ

να + νβ = 1

F̃g

G F̃

The  reduced  volume  fractions  of  the  and  phases,  de-
noted  as  and ,  respectively,  satisfy  the  constraint

.  We  note  that  the  method  developed  by  Mester,
Lynd, and Fredrickson[42] is essentially rooted in this optimiza-
tion  perspective.  Importantly,  the  above  formulation  allows
for  computing  both  the  GCE  free  energy  and  the  GE  free

energy  purely from the CE free energy  without requiring
any additional computations in their respective ensembles.

ANALYTICAL MODELS

In rare scenarios, free energies and chemical potentials have an-
alytical  expressions.  Our  formulation  can  be  straightforwardly
applied  to  such  cases.  As  an  illustrative  example,  we  consider
disordered phases (DIS) in a binary blend of two types of block
copolymers,  each  consisting  of  any  number  of  A  and/or  B
blocks,  which generalizes the simple A/B binary blend. Accord-
ing to the Flory-Huggins theory, the CE free energy density of a
DIS phase in this binary blend is given by,[35]

F̃ =
ϕ1

α1
lnϕ1 +

ϕ2

α2
lnϕ2 + χNϕAϕB (12)

α1N α2N

χ
ϕ1 ϕ2

ϕA = f1ϕ1 + f2ϕ2

ϕB = (1 − f1)ϕ1 + (1 − f2)ϕ2

f1 f2

Here,  and  are  the  number  of  segments  in  block
copolymer 1  and 2,  respectively.  The Flory-Huggins  interaction
parameter  characterizes  the  immiscibility  between  A  and  B
segments.  and  represent the respective volume fractions
of  block  copolymers  1  and  2,  while  and

 are respective volume fractions of A
and  B  segments  with  and  being  respective  volume  frac-
tions of A segments in block copolymers 1 and 2.

(μ̃2 = 0)
μ̃1

γ1 γ2

To  compute  the  effective  chemical  potential,  we  select
block  copolymer  2  as  the  reference  component .
Thus, only  is relevant. Using Eq. (4), the intermediate quan-
tities  and  are derived as:

γ1 = 1
α1

+
1
α1

lnϕ1+ χN{2f1(1− f1)ϕ1+ [f1(1− f2)+ f2(1− f1)]ϕ2} (13)

γ2 = 1
α2

+
1
α2

lnϕ2 + χN{2f2(1− f2)ϕ2 + [f1(1− f2)+ f2(1− f1)]ϕ1} (14)

μ̃1

γ2 γ1

The  effective  chemical  potential  is  then  obtained  by
subtracting  from  :

μ̃1 = 1
α1

lnϕ1 −
1
α2

ln(1 − ϕ1) + χNϕ1(4f1f2 − 2f 2
1 − 2f 2

2 ) +
χN(f1 − f2 − 2f1f2 + 2f 2

2 ) + 1
α1

−
1
α2

(15)

γp

γ1 ϕ1

As can be seen,  the introduction of  significantly  simpli-
fies the derivation of effective chemical potentials. For exam-
ple, computing  only involves terms containing  explicit-
ly, bypassing the derivatives of composite functions imposed
by  the  mass  conservation  constraint.  This  advantage  be-
comes increasingly pronounced as either the number of com-
ponents or the number of species increases.

For a binary system, two-phase equilibrium conditions can
be obtained from Eq. (7),⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

μ̃α
1(ϕα1) = μ̃β

1(ϕβ1)
μ̃α

1(ϕα1) = F̃α(ϕα1) − F̃β(ϕβ1)
ϕα1 − ϕβ1

(16)

AB3

Fig.  1 depicts  the  free  energy  curve  for  A-rich  DIS  phase
and B-rich DIS phase in a binary blend of  AB diblock copoly-
mers  (component  1)  and  miktoarm  block  copolymers
(component  2).  The  double-well  structure  observed  in  the
free  energy  curve  is  typical  for  two-phase  coexistence.  We
treat  the  phase  equilibrium  condition  given  by  Eq.  (16)  as  a
set of nonlinear equations. By solving these equations we can
obtain  the  two-phase  coexistence  points,  which  appear  in
Fig. 1 as two common tangent points.
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Another  common method[41] for  finding the phase coexis-
tence points involves converting the CE free energy into GCE
free  energy.  In  practice,  we  first  evaluate  free  energies  in  CE
and then utilize Eq. (8) to convert them to the GCE free ener-
gies. The equilibrium condition is given by Eq. (9) as,

F̃ α
g (ϕα1) = F̃ β

g (ϕβ1) (17)

μ̃1(ϕ1)
μ̃1(ϕ1) ϕ1(μ̃1 )̃

μ1

As shown in Fig. 2(a), the intersection of GCE curves marks
the  phase  coexistence  from  which  the  effective  potential  at
phase equilibrium is obtained. According to Eq. (6), the corre-
sponding volume fractions are derived by inverting the func-
tion ,  as  shown  in Fig.  2(b).  Note  that  the  function

 is  explicit  while  its  inverse  is  implicit.  It  is  also
worth  noting  that,  while  in  principle  is  unbounded,  the
volume fractions remain confined between 0 and 1. Thus it is
more  intuitive  and  convenient  to  perform  calculations  in  CE
rather than in GCE.

NUMERICAL MODELS

nc V

We demonstrate that  our effective chemical  potential  formula-
tion can still  be applied explicitly when free energies and relat-
ed  quantities  are  only  available  through  numerical  computa-
tions.  Here  we  use  self-consistent  field  theory  (SCFT)  calcula-
tions as an example. Consider an incompressible polymer blend
consisting  of  block  copolymer  components  in  a  volume ,
the free energy in CE at the mean-field level is given by:[34,47]
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F̃ = 1
2

ns

∑
i=1

ns

∑
j=1

1
V
∫ dr χijNϕsi(r)ϕsj(r) − ns

∑
i=1

1
V
∫ dr wi(r)ϕsi(r) −

nc

∑
p=1

ϕp
αp

lnQp +
nc

∑
p=1

ϕp
αp

(ln
ϕp
αp

− 1) (18)

ϕsi(r)
i ∈ {1, 2,⋯, ns} ϕp

p ∈ {1, 2,⋯, nc} ns nc

wi

αp = Np/N N

p Qp

Qp

where  represents  the  equilibrium  density  field  of  each
species (i.e. the type of segment) with ,  is the
volume  fraction  of  each  component  in  the  system  with

, and  and  are the number of species and
the  number  of  components,  respectively.  The  auxiliary  fields
conjugated to the density fields are denoted as . The normal-
ized chain length of  each component is  with  be-
ing an arbitrary chosen reference chain length. For each compo-
nent ,  represents  its  dimensionless  single-chain  partition
function following the formulation in Ref.[47] SCFT is the state-of-
the-art  numerical  technique  for  calculating  the  free  energy  as
well as .[48–50]

ϕsi(r) ϕp γpBy noting that  is independent of , deriving  from
Eq. (18) is similar to the previous section,

γp =
1
αp

ln
ϕp
αp

−
1
αp

lnQp (19)

p
r

Using Eq.  (3),  we can readily  obtain  the  effective  chemical
potential  of  any  component  by  choosing  one  of  compo-
nents ( ) as the reference,

μ̃p =
1
αp

ln
ϕp

αpQp
−

1
αr

ln
ϕr

αrQr
(20)

μ

This equation is equivalent to Eq. (47) of Ref. [41], confirm-
ing  the  validity  of  our  formulation.  Moreover,  our  approach
clarifies that the notation “ ” in their work should refer to the
effective chemical potential rather than the bare chemical po-
tential.

Obviously, both the free energies in Eq. (18) and the effec-
tive chemical  potentials  in Eq.  (20)  can be obtained via SCFT
calculations  in  CE  (CE-SCFT).  Consequently,  as  demonstrated
in the previous section, the solution of phase coexistence can
be  carried  out  without  performing  further  SCFT  calculations
in other ensembles.  In the following section,  we will  demon-
strate  how  to  compute  phase  coexistence  of  two  ordered
phases  in  both  binary  and  ternary  blends  of  block  copoly-
mers using CE-SCFT based on our formulation.

Binary AB/BC Blends
fA = fC = 0.357

χABN = χBCN = 20 χACN = 35

(GA) (CA
6a)

ϕAB

An  AB/BC  diblock  copolymer  blend  with ,
 and  is intentionally chosen to be

the  same  as  that  in  Ref.  [43]  for  the  convenience  of  validating
our results. According to Ref. [43], such a blend exhibits coexis-
tence of several ordered phases, including the alternating dou-
ble  gyroid  and  hexagonal-packed  alternating  cylinders

with  A  majority  cylinders .  We  reproduce  the  free  energy
curves  of  both  phases  as  a  function  of  using  CE-SCFT  as
shown in Fig. 3. Then, by solving the nonlinear system of equa-
tions in Eq. (7), we obtain the corresponding phase equilibrium
solution,  which  is  depicted  in Fig.  3 as  the  common  tangent
line —analogous to that shown in Fig. 1.

μ̃AB

μ̃AB ϕAB

Similar to Fig. 2, using our formulation it is also possible to
determine phase coexistence in GCE by converting the calcu-
lated  CE  free  energies  to  the  GCE  free  energies  using  Eq.  (8)
without  performing  GCE-SCFT. Fig.  4(a)  illustrates  the  inter-
section of  two GCE free  energy  curves,  allowing us  to  deter-
mine  the  at  phase  coexistence.  The  corresponding  vol-
ume  fractions  of  the  two  coexistence  phases  are  then  ob-
tained by looking up the mapping between  and  giv-
en by Eq. (20), as shown in Fig. 4(b).

Ternary AB/BC/ABC Blends

f ′A = f ′C = 0.319 N′ = 1.3428N

μ̃φAB
μ̃φBC (φ = GA CA

6a ϕAB ϕBC

GA, CA
6a

Our  formulation  can  be  straightforwardly  extended  to  three-
component systems. By adding an additional linear triblock ter-
polymer ABC to the previous AB/BC blend, we obtain a ternary
AB/BC/ABC blend. To be consistent with Ref.  [43],  we also con-
sider a blend with volume fractions of A and C blocks in ABC be-
ing  and its number of segments .
Other  parameters  remain  the  same  as  in  the  previous  AB/BC
blend. By setting the ABC component as the reference, CE-SCFT
calculations result in a series of CE free energies as well  as 

and  , ,  AB-richG)  by  varying  and  as
shown in Fig. 5(a). In a ternary system, the three-phase equilibri-
um  ( ,  AB-richG)  can  be  determined  by  constructing  a
common tangent plane, which is equivalent to pairwise coexis-
tence between the three ordered phases, involving three com-
mon tangent lines.  The resulting phase coexistence points and
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Fig. 2    (a) The grand canonical free energy  and (b) the volume
fraction of  for the disorder phase as a function of the effective
chemical  potential .  The  intersection  in  the  upper  panel
indicates  phase  coexistence.  The  volume  fractions  of  at  the
phase coexistence are found as the intersections of the dashed line
and the curve.
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μ̃k
AB μ̃k

BC

the enclosed three-phase region are shown in Fig. 5(b). Accord-
ing to Eq. (7), the three tangent points satisfy the condition that
their  effective  chemical  potentials,  and ,  are  equal  to
each other, respectively, and also equal to the slopes of the re-
spective  common  tangent  lines.  The  common  tangent  plane
construction helps  to  elucidate  the  concept  of  phase  equilibri-
um  in  a  more  intuitive  way,  which  offers  a  consistent  under-
standing of the physical  meaning of the effective chemical po-
tential and emphasizes the practical significance of our formula-
tion.

From  the  theoretical  perspective  of  effective  chemical  po-
tential, we reveal that the numerical solutions to phase equi-
librium problems in GCE, semi-GCE, and GE can all be unified
and solved within the CE. By solving CE-SCFT, the thermody-
namic variables obtained can be directly mapped to other en-
sembles without the need to reconstruct the SCFT equations
for specific ensembles. The following comparative analysis of
the traditional implementation paths for GCE, semi-GCE, and
GE  demonstrates  the  implicit  relationship  between  the  con-
trol  variables  of  these  ensembles  and  the  effective  chemical
potential in the canonical ensemble.

Grand Canonical Ensemble

μk
ϕk

ϕk = e
μk

kBTQk Qk

k

μk

Park, Bates and Dorfman investigated ternary blends by identi-
fying the phase boundaries of candidate phases within GCE.[43]

They used the chemical potentials, , as input parameters and
volume  fractions, ,  were  computed  from  them  by  using  the

relation , where  represents the single-chain par-

tition  function  for  component .  Subsequently,  they  imple-
mented a GCE-SCFT and performed calculations in GCE. Howev-
er,  it  appears that they did not realize that in their  formulation
the  input  parameters,  in  GCE,  actually  represent  "effective
chemical potentials'' because they have set the chemical poten-
tial of one component to 0. This subtle distinction has been ad-
dressed  by  our  formulation  which  clearly  distinguished  bare
chemical  potentials  and effective chemical  potentials,  avoiding
any  confusion  and  misunderstandings.  In  our  approach,  effec-
tive chemical potentials can be directly obtained from CE-SCFT

according to Eq.  (20),  allowing us to seamlessly convert  the CE
free  energy  into  the  GCE  free  energy  without  performing  any
GCE-SCFT simulations as  demonstrated in the previous section
and in Fig. 5.

Semigrand Canonical Ensemble

μ1

μ μ′

μ
ϕ3

ϕ3 = γDe
μ/kBTQ3 Q3

ΦSG(μ′, ϕ3) μ′ ϕ3

ϕD(r)
ϕ3

Xie  and  Shi[44] developed  a  method  that  implements  the  SCFT
within the so-called semigrand canonical  ensemble (semi-GCE)
to streamline the analysis  of  phase behavior  of  AB/C/D ternary
blends.  They  set  (the  chemical  potential  of  the  AB  copoly-
mers) to 0 by invoking the incompressibility condition, which is
equivalent  to  our  approach  of  designating  the  AB  component
as the reference. Therefore, the two remaining chemical poten-
tials for C ( ) and D ( ) components are, in fact, effective chem-
ical  potentials  in our formulation.  is  then transformed to the
average  concentration  of  D  homopolymers, ,  according  to

, where  is the single chain partition function
of  component  D.  Consequently,  the  free  energy  in  semi-GCE,

,  treats  and  as  its  independent  variables.  The
form of the SCFT equations is similar to that in GCE, except for
the  equation  used  to  calculate .  In  this  way,  it  addresses
some  of  the  aforementioned  disadvantages,  namely  that  is
typically bounded between 0 and 1, making it a more manage-
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μable and intuitive variable as compared to , which can theoret-
ically range from negative to positive infinity. However, it should
be noted that this approach also requires reformulating CE-SCFT
and consequently, additional semi-GCE SCFT software has to be
implemented.

Gibbs Ensemble

G = VIF̃I + VIIF̃II

VI =
ϕ0 − ϕ2

ϕ1 − ϕ2
VII =

ϕ1 − ϕ0

ϕ1 − ϕ2

ϕ1 ϕ2

ϕ0

G

To avoid numerical instability caused by poor initial values when
solving GCE-SCFT, Mester, Lynd, and Fredrickson[42] proposed a
method that optimizes the free energy directly within the Gibbs
ensemble  (GE)  which  takes  volume  fractions  as  independent
variables. They considered a binary blend of A/AB, where the GE
free  energy  of  overall  system  is  expressed  as .
The polymers are distributed between two simulation cells with

volumes  and ,  where  and  rep-

resent the volume fractions of the two possible coexisting phas-
es,  respectively,  and  is  an  appropriately  chosen  initial  vol-
ume  fraction.  At  the  two-phase  coexistence  point,  the  GE  free
energy  reaches  its  minimum value.  In  their  method,  is  com-
puted directly from GE-SCFT which differs from CE-SCFT. Thus, it
also  requires  implementation  of  a  GE-SCFT  solver  rather  than
using existing CE-SCFT solvers. Our method, however, can read-
ily  transform  thermodynamic  quantities  from  CE  to  GE  which
avoids  performing GE-SCFT calculations,  thereby enhancing its
versatility and efficiency.

In summary, all of the aforementioned methods deeply in-
tegrate the solution of phase equilibria into a customized self-
consistent  field  method  in  a  particular  ensemble,  which  re-
quires additional adjustments for each specific ternary blend
system.  The  coupling  results  in  a  more  complex  and  less
transparent formulation that may limit the generalizability of
their  methods.  Additionally,  their  methods  are  primarily  de-
signed  to  solve  phase  equilibria  in  ternary  component  sys-
tems, which restricts their applicability to more complex com-
ponent  systems.  In  contrast,  our  method  does  not  couple
SCFT with the solution of  phase equilibria,  making it  simpler

and  more  intuitive.  As  our  approach  does  not  make  a  priori
assumption  about  the  number  of  components,  it  can  be  ex-
tended  to  accommodate  systems  with  more  components,
making it easier to apply and extend to a wider range of sce-
narios.

CONCLUSIONS

In this study, we introduce the concept of the “effective chemi-
cal  potential” and  develop  a  unified  framework  for  solving
phase  equilibria  in  multi-component  polymer  blend  systems.
This framework establishes universal relationships among ther-
modynamic quantities in the canonical ensemble, grand canon-
ical  ensemble,  semi-grand  canonical  ensemble,  and  Gibbs  en-
semble,  achieving  a  theoretical  unification  for  cross-ensemble
phase coexistence determination. The core contribution of this
method lies in the fact that it eliminates the need to reconstruct
the self-consistent field theory (SCFT) calculation framework for
different ensembles.  Instead,  it  directly utilizes the SCFT results
from  the  canonical  ensemble,  allowing  for  the  flexible  conver-
sion between ensembles and facilitating the analysis of system
phase behavior.

γp

Building  on  this  concept,  various  backend  methods  for
solving phase equilibrium can be flexibly selected, significant-
ly  reducing  the  computational  complexity  typically  associat-
ed with multi-component phase equilibrium calculations. The
introduction  of  enables  efficient  calculations  of  effective
chemical potentials,  resulting in a more transparent formula-
tion.  Moreover,  our  concept  enables  better  utilization  of  CE-
SCFT calculation results and offers potential optimization op-
portunities  for  developing  highly  efficient  numerical  meth-
ods. We validated the robustness and versatility of our frame-
work by applying it to both analytical models based on Flory-
Huggins theory and numerical models derived from CE-SCFT
calculations. The application of our method to binary (AB/BC)
and ternary (AB/BC/ABC) blends of block copolymers demon-
strated its  ability  to  reproduce known results  in  a  more con-
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sistent manner.
The core advantage of our framework lies in its general ap-

plicability  across  various  types  of  systems,  independent  of
specific theoretical models for phase equilibrium. This flexibil-
ity  not  only  allows seamless  integration of  well-known theo-
retical models, such as Flory-Huggins theory and SCFT, but al-
so opens avenues for exploring new theoretical models in the
future.  We  expect  it  to  become  a  valuable  tool  for  studying
the  phase  behavior  of  multi-component  polymer  blends,  fa-
cilitating  the  exploration  of  phase  behaviors  in  more  com-
plex blend systems with additional parameters.
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