
Exponential time differencing methods with Chebyshev collocation for polymers
confined by interacting surfaces
Yi-Xin Liu and Hong-Dong Zhang 

 
Citation: The Journal of Chemical Physics 140, 224101 (2014); doi: 10.1063/1.4881516 
View online: http://dx.doi.org/10.1063/1.4881516 
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/140/22?ver=pdfcov 
Published by the AIP Publishing 
 
Articles you may be interested in 
Krylov subspace methods for computing hydrodynamic interactions in Brownian dynamics simulations 
J. Chem. Phys. 137, 064106 (2012); 10.1063/1.4742347 
 
An immersed boundary method for Brownian dynamics simulation of polymers in complex geometries:
Application to DNA flowing through a nanoslit with embedded nanopits 
J. Chem. Phys. 136, 014901 (2012); 10.1063/1.3672103 
 
Membrane covered duct lining for high-frequency noise attenuation: Prediction using a Chebyshev collocation
method 
J. Acoust. Soc. Am. 124, 2918 (2008); 10.1121/1.2977743 
 
Elastic wave modeling using a multidomain Chebyshev collocation method 
AIP Conf. Proc. 615, 35 (2002); 10.1063/1.1472778 
 
A Chebyshev method for calculating state-to-state reaction probabilities from the time-independent wavepacket
reactant-product decoupling equations 
J. Chem. Phys. 106, 7629 (1997); 10.1063/1.473766 

 
 

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

202.120.224.53 On: Tue, 10 Jun 2014 02:44:37

http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/1548820253/x01/AIP-PT/JCP_ArticleDL_051414/aipToCAlerts_Large.png/5532386d4f314a53757a6b4144615953?x
http://scitation.aip.org/search?value1=Yi-Xin+Liu&option1=author
http://scitation.aip.org/search?value1=Hong-Dong+Zhang&option1=author
http://scitation.aip.org/content/aip/journal/jcp?ver=pdfcov
http://dx.doi.org/10.1063/1.4881516
http://scitation.aip.org/content/aip/journal/jcp/140/22?ver=pdfcov
http://scitation.aip.org/content/aip?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/137/6/10.1063/1.4742347?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/136/1/10.1063/1.3672103?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/136/1/10.1063/1.3672103?ver=pdfcov
http://scitation.aip.org/content/asa/journal/jasa/124/5/10.1121/1.2977743?ver=pdfcov
http://scitation.aip.org/content/asa/journal/jasa/124/5/10.1121/1.2977743?ver=pdfcov
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.1472778?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/106/18/10.1063/1.473766?ver=pdfcov
http://scitation.aip.org/content/aip/journal/jcp/106/18/10.1063/1.473766?ver=pdfcov


THE JOURNAL OF CHEMICAL PHYSICS 140, 224101 (2014)

Exponential time differencing methods with Chebyshev collocation
for polymers confined by interacting surfaces

Yi-Xin Liu (���)a) and Hong-Dong Zhang (���)
State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science,
Fudan University, Shanghai, China

(Received 17 February 2014; accepted 23 May 2014; published online 9 June 2014)

We present a fast and accurate numerical method for the self-consistent field theory calculations of
confined polymer systems. It introduces an exponential time differencing method (ETDRK4) based
on Chebyshev collocation, which exhibits fourth-order accuracy in temporal domain and spectral ac-
curacy in spatial domain, to solve the modified diffusion equations. Similar to the approach proposed
by Hur et al. [Macromolecules 45, 2905 (2012)], non-periodic boundary conditions are adopted to
model the confining walls with or without preferential interactions with polymer species, avoiding
the use of surface field terms and the mask technique in a conventional approach. The performance
of ETDRK4 is examined in comparison with the operator splitting methods with either Fourier col-
location or Chebyshev collocation. Numerical experiments show that our exponential time differenc-
ing method is more efficient than the operator splitting methods in high accuracy calculations. This
method has been applied to diblock copolymers confined by two parallel flat surfaces. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4881516]

I. INTRODUCTION

Confinement of block copolymers in thin films and
other geometries provides a feasible and efficient route to
produce novel structures in nanoscale, which are important
in a wide range of applications including nanolithography,
nanotemplating, nanoporous membranes, coatings, and bio-
materials.1–6 In terms of confinement, it is worth mention-
ing that polymer brushes obtained by tethering polymer chain
ends onto substrates manifest another important example.7

Significant progresses have been made in understanding the
self-assembly of polymers under confinement both experi-
mentally and theoretically. Recent theoretical and numerical
studies reveal a number of general principles that govern the
structure formation of polymers confined in various geometri-
cal environments.6, 7 Besides those parameters associated with
the polymer itself (block volume fractions, Flory-Huggins in-
teraction parameters between different blocks, chain archi-
tectures, etc.), putting polymers inside a spatially confined
environment introduces new control parameters. Two most
important ones are the shape and size of the confining geome-
try which determine the degree of confinement or the com-
mensurability, and the surface-monomer interactions char-
acterized by the surface affinity. Both parameters strongly
influence the structure and the self-assembly behavior of poly-
mers. In particular, the surface affinity not only affects the
monomer distribution near the confining walls but also the
phase boundaries.

Many theoretical and numerical tools are available to in-
vestigate the confining polymer systems, among which the
self-consistent field theory (SCFT) is particularly attractive.

a)Author to whom correspondence should be addressed. Electronic mail:
lyx@fudan.edu.cn

The numerical SCFT is a method of choice for predicting
complex morphologies and the phase diagram of the mi-
crophase separations of block copolymers in bulk.8 It can pro-
vide great details about monomer and chain end densities as
well as convenient ways to tune almost all parameters. Most
importantly, efficient algorithms of the numerical SCFT have
been developed to explore both metastable and stable phases.
The set of equations encountered in the SCFT are usually
solved numerically by an iterative scheme in a self-consistent
manner. Among all iterative steps, the most expensive one (at
least for neutral polymers) involves the solution of a mod-
ified diffusion equation (MDE) for the chain propagator (a
probability distribution of polymer segments). Two efficient
numerical approaches have emerged: the spectral method
introduced by Matsen and Schick9 and the pseudospec-
tral method introduced by Rasmussen and co-workers.10, 11

The spectral method with poor O(M3) algorithm complex-
ity, where M is the number of grid points in spectral space,
enjoys its high computational efficiency owing to the fact
that M can be drastically reduced by incorporating the known
symmetry of the phase. The pseudospectral method as a real-
space method, on the other hand, is superior when the sym-
metry of the phase is unknown, or when no symmetry is
expected, mainly because of its nearly ideal O(M log M) al-
gorithm complexity thanks to the usage of the fast Fourier
transform (FFT). SCFT calculations of confined polymer sys-
tems, where phases are believed to be even more complex and
phase structures along the confined direction hardly have any
symmetry, prefer real-space methods.

Recently, the numerical SCFT has been applied to con-
fined polymer systems to search for possible morphologies
and construct phase diagrams.12–16 Generally, the confine-
ment is realized by imposing non-periodic boundary condi-
tions other than the periodic boundary condition (PBC) on

0021-9606/2014/140(22)/224101/12/$30.00 © 2014 AIP Publishing LLC140, 224101-1
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the MDE for chain propagators. To model a boundary that is
neutral and impenetrable, such as a solid wall without prefer-
ential interactions with polymers, the Dirichlet boundary con-
dition (DBC) is often incorporated into the MDE.17 With this
boundary condition on the propagator, a depletion layer forms
and the polymer density vanishes at the wall. Sometimes, the
Neumann boundary condition (NBC) is used instead of DBC
to avoid the depletion layer which may become too sharp to
be resolved accurately due to the limit of computation time.18

Fortunately, MDEs with above two kinds of boundary con-
ditions, if they are homogeneous, can still be solved by the
pseudospectral method, provided that the standard Fourier ba-
sis (for PBC) is replaced by the sine (for DBC) or cosine (for
NBC).19 However, such Fourier sine (cosine) methods often
lose spectral accuracy, i.e., the exponential convergence, since
it requires the solution of the MDE is infinite smooth and its
all even (odd) derivatives of second and higher order must
vanish at the boundary. But these conditions are hardly ful-
filled in confined polymer systems. Even worse, these Fourier
based methods is not able to handle mixed and Robin bound-
ary conditions (RBC), which are most appropriate for surfaces
with preferential affinity.20, 21

In practice, most of surfaces favor one or more species
in a multi-component system and thus exhibit some degree of
preferential affinity. To model such surfaces, Matsen12 devel-
oped a masking method which introduces surface field terms
to describe the surface affinity and a generalized incompress-
ibility condition (the mask) to preserve the depletion layer
of the polymer segment density. This technique allows us
to use PBCs and DBCs and avoid the difficulties associated
with mixed boundary conditions and RBCs. Consequently,
the pseudospectral method is still applicable. However, the
numerical SCFT armed with this technique still suffers from
same problems faced by the previous numerical SCFT for
neutral and impenetrable surfaces, i.e., the difficulty in resolv-
ing the sharp depletion layer and loss of accuracy with DBCs.
Moreover, the exact form of the mask and the surface field
terms are normally specified arbitrary, which is not always
irrelevant.12

To this end, it highly demands a method that can di-
rectly deal with the mixed boundary conditions and RBCs
as an alternative to the Fourier based pseudospectral method
with or without the mask. We do notice that there is such
an attempt. Very recently, Hur et al. proposed a pseudospec-
tral method that can handle non-periodic boundary condi-
tions while still preserving the spectral accuracy.22 The major
difference between this method and the conventional pseu-
dospectral method is that Chebyshev polynomials, in place of
Fourier bases, are used to approximate spatial functions. Ac-
cordingly, an irregular grid consisting of Chebyshev-Gauss-
Lobatto (CGL) points, which distribute more densely near
the boundary, is used. Chebyshev collocation enables solu-
tion of the MDE subject to non-periodic boundary conditions
with exponential convergence. And it permits rapid transfor-
mations from the physical space to the spectral space and vice
versa in debt to the availability of FFTs. In this method, the
operator splitting (OS) algorithm is applied as in the con-
ventional pseudospectral method. But it costs additional op-
erations because the Laplacian term is not diagonal in the

transformed Chebyshev space. In particular, to represent the
Laplacian term in the spectral space, the authors used a Padé
approximation to re-express the Laplacian term in a form with
consistent second order accuracy in the contour step. Then,
pairs of Helmholtz-type equations are solved for each contour
step, which needs O(48M) operations. Note the large coeffi-
cient before the linear term. For Helmholtz equation subject
to mixed boundary conditions and RBCs, linear complexity is
also possible but it requires an even larger coefficient. Proba-
bly due to this reason, the surface affinity was modeled by the
masking method other than RBCs in their studies. Moreover,
although it is possible to improve the contour stepping accu-
racy by higher order OS algorithm, more and more Helmholtz
pairs should be solved. For example, for a fourth-order split-
ting scheme, there are seven Laplacian terms to be evaluated
in comparison to one for the second order scheme. Never-
theless, it is necessary to develop higher order algorithms for
stepping along the contour to achieve the demanded accuracy
with bigger contour step.

Here, we propose a competitive fourth order accurate al-
gorithm for solving the MDEs that can treat non-periodic
boundary conditions efficiently and consistently. Chebyshev
collocation is also used to preserve spectral accuracy. Unlike
the pseudospectral method utilizing the OS algorithm, we in-
troduce an exponential time differencing (ETD) scheme to
approximate the time differential and a fourth order Runge-
Kutta scheme (RK4) for the time stepping. The algorithm
details about the ETDRK4 method and the numerical SCFT
scheme is described in Sec. III. The performance of the ET-
DRK4 method is addressed in Secs. IV and V. In Sec. VI,
we present applications of the ETDRK4 SCFT method on
diblock copolymers confined by two parallel flat interacting
surfaces.

II. THEORETICAL FORMULATION

A. SCFT for diblock copolymers under confinement

For AB diblock copolymers under confinement, the set of
SCFT equations are the same as those of diblock copolymers
in bulk. The only difference between bulk and confined SCFT
in present formulation lies in the boundary conditions of the
MDEs which will be addressed later on. Below we summa-
rize the main SCFT equations for an canonical ensemble of n
AB diblock copolymers with N segments in total, of which
the A and B blocks consist of fN and (1 − f)N segments,
respectively. Starting from the partition function and utiliz-
ing the Hubbard-Stratonovich transformation, one obtains the
Helmholtz free energy in the mean-field approximation (in
units of kBT )

F =
∫

dr
[
χφA(r)φB(r) − wA(r)φA(r) − wB(r)φB(r)

+ξ

2
[φA(r) + φB(r) − 1]2

]
− ln Q[wA,wB] (1)

with the position vector r rescaled by Rg and segment den-
sities φK (K = A, B) rescaled by the average segment den-
sity ρ0, where Rg = a

√
N/6 is the radius of gyration of an

unperturbed AB block copolymer with a being the Kuhn
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length. The Flory-Huggins interaction parameter χ in the
above equation describes the interaction energy between A
and B segments. In Eq. (1), wA and wB are auxiliary potential
fields generated by A and B blocks, and Q represents the nor-
malized single chain partition function. The term containing
ξ describes a penalty for local density fluctuations away from
the average segment density,8, 23 which is introduced to make
current formulation compatible with various boundary condi-
tions. The parameter ξ describes the strength of the harmonic
energy penalty thus its reciprocal ξ−1 measures the compress-
ibility of the model. This model approaches the incompress-
ible model in the limit ξ → ∞.

The set of SCFT equations are given by

wA(r) = χNφB(r) + ξN [φA(r) + φB(r) − 1] , (2)

wB(r) = χNφA(r) + ξN [φA(r) + φB(r) − 1] . (3)

These equations should be solved in a self-consistent manner
since φA and φB implicitly depend on wA and wB . The seg-
ment densities for A and B segments can be evaluated from
chain propagators qA, qB, and corresponding complementary
propagators q∗

A, q∗
B ,

φA(r) = 1

Q

∫ f

0
ds qA(r, s)q∗

A(r, f − s), (4)

φB(r) = 1

Q

∫ 1−f

0
ds qB(r, s)q∗

B (r, 1 − f − s). (5)

The chain propagators qK (r, s), K = A, B, which give the
probability to find segment s at position r, satisfy the follow-
ing MDE:

∂qK (r, s)

∂s
= ∇2qK − wK (r)qK, (6)

with initial condition qA(r, 0) = 1 for chain propagator of
A block and qB(r, 0) = qA(r, f ) for chain propagator of B
block. The complementary propagators q∗

K (r, s) also satisfy
Eq. (6) but subject to different initial conditions: q∗

A(r, 0)
= q∗

B(r, 1 − f ) and q∗
B(r, 0) = 1. The normalized single

chain partition function Q can also be obtained from the
propagator as Q(r, [wA,wB]) = V −1

∫
dr qB (r, 1 − f ) with

V the dimensionless volume of the system.

B. Modelling interacting surfaces

In this study, we are interested in situations where poly-
mer chains cannot explore the full space freely; they are
confined by impenetrable surfaces outside of which the prob-
ability to find a polymer segment vanishes. As discussed in
the Introduction, to model the confinement effect, it is suffi-
cient to impose appropriate boundary conditions on the chain
propagators.8 For neutral, impenetrable surfaces, a convenient
choice is to use the DBC. To be compatible with the incom-
pressible model or to avoid resolving sharp boundary layers
of concentrated polymer solutions and polymer melt, the DBC
has to be replaced by the NBC. For surfaces that interact with
polymer segments, previous numerical studies often use the
DBC in combination with a surface potential where the DBC

ensures the segment density vanishes at the boundary and
the surface potential models the surface affinity. As this ap-
proach may suffer from devoting too much computation force
on resolving the surface potential near the boundary, here we
adopt the approach as suggested by Fredrickson8 for numer-
ical studies which replaces the surface potential with an ef-
fective boundary condition. For weakly attractive walls, de
Gennes21 has proposed an appropriate boundary condition,

∂q

∂n
+ κq = 0 at the boundary, (7)

where ∂q/∂n denotes the normal derivative at the boundary,
and |κ|kBT gives a measure of the binding energy per poly-
mer chain at the surface. Thus, |κ|−1 is a length scale that
characterizes the net strength of the attractive interaction. The
boundary condition in Eq. (7), so called the RBC, reduces to
the DBC when |κ| → ∞ and it reduces to the NBC when
κ = 0.

To be specific, in this study we consider the situation
where the melt is confined by two parallel flat surfaces located
at z = 0 and z = D. Then the boundary conditions become

∂qK

∂z
± κjKqK = 0, (8)

for K = A, B, and j = a, b, where a and b stand for the z
= 0 and z = D boundaries, respectively. The plus and minus
signs are chosen for κa and κb, respectively, due to the oppo-
site sign of the normal derivative at the two boundaries. The
surface affinity parameter κ jK being positive means that con-
fining walls attract polymer segments of K blocks while neg-
ative parameters indicate that confining walls prefer polymer
segments not from K blocks. To reduce the number of param-
eters, we introduce an additional condition,8 κ jAf + κ jB(1 − f)
= 0, for j = a, b, so that κa = κaA and κb = κbA are the left
control parameters.

III. NUMERICAL METHODS

In this study, the set of SCFT equations listed in Sec. II A
are solved by a standard real-space iterative scheme as de-
scribed in Ref. 8. In this scheme, a continuous steepest de-
scent scheme using the explicit Euler formula is used to relax
an arbitrary initial configuration of the potential field wK (r)
to a local solution.8 The segment density φK (r) is evaluated
by a Simpson’s rule. The Clenshaw-Curtis quadrature used
by Ref. 22 is adopted to evaluate the normalized single chain
partition function Q and the free energy F on the CGL grid.

The solution of the MDE lies in the heart of this
scheme—it usually dominates the computational cost. Here,
an efficient algorithm, the ETDRK4 method on CGL grid,
which is spectrally accurate in spatial discretization and
fourth order accurate in time discretization, is devised to solve
MDEs involving non-periodic boundary conditions. For the
sake of comparison, the operator splitting methods on equi-
spaced grid presented in Ref. 19 and the operator splitting
methods on CGL grid (OSCHEB) proposed by Hur et al.22

are also implemented. Note that the operator splitting meth-
ods on equispaced grid are only applicable to DBC and NBC.
The one applicable to DBC requires sine basis (OSS) while
the other applicable to NBC requires cosine basis (OSC).
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To efficiently handle non-periodic boundary conditions,
we discretize spatial variables on a CGL grid with a set of
points

zj = cos

(
πj

Nz

)
, j = 0, 1, . . . , Nz. (9)

Obviously, these Chebyshev points distribute irregularly on
the line segment, z ∈ [−1, 1], and are clustered near the two
boundaries at z = −1 and z = 1. The actual range along z
dimension, [0, Lz], can be projected onto the interval [−1, 1]
through a linear transform z′ = 2z/Lz − 1. Then the MDE
is solved by the ETDRK4 method, which has been shown to
perform extremely well in solving diffusion type problems.24

A. ETDRK4 on the CGL grid

The ETDRK4 algorithm is an exponential time differenc-
ing method based on Runge-Kutta time stepping. Here, we
closely follow the treatment of Cox and Matthews25 but with
some further improvements. We first write the MDE in a gen-
eral form ∂q/∂s = Lq + F(q), where L = ∂2/∂z2 is an ellip-
tic operator and F = −w(r)q. Once we discretize the spatial
part of the MDE we get a system of ODEs,

∂q

∂s
= Lq + F(q, s), (10)

where L and F are matrix representations for L and F , re-
spectively. Multiplying both sides of Eq. (10) with exp(−Ls)
and integrating over a single contour step from s = sn to
s = sn+1 = sn + h, we get

q(sn+1) = eLhq(sn) + eLh

∫ h

0
dτ eLτ F[q(sn + τ ), sn + τ ].

(11)
Various ETD schemes come from the approximations to the
integral in the above equations. In this study, we employ the
scheme of Krogstad26 with formulae given by

an = ϕ0(Lh/2)qn + h

2
ϕ1(Lh/2)F(qn), (12a)

bn = an + hϕ2(Lh/2)[F(an) − F(qn)], (12b)

cn = ϕ0(Lh)qn + hϕ1(Lh)F(qn)

+2hϕ2(Lh)[F(bn) − F(qn)], (12c)

qn+1 = cn + h[4ϕ3(Lh) − ϕ2(Lh)][F(qn) + F(cn)]

+2hϕ2(Lh)F(an) − 4hϕ3(Lh)[F(an) + F(bn)],

(12d)

where h and I are the time step and the identity matrix, re-
spectively. The above scheme is based on Runge-Kutta time
stepping which is fourth order accurate in this particular form.
The coefficients in the above equations are defined by ϕl+1(z)
= [ϕl(z) − 1/l!]/z with l = 0, 1, 2 and ϕ0(z) = exp (z). Then the
remaining tasks are construction of matrix L and evaluation of
these coefficients. With all related matrices and coefficients in
hand, the ETDRK4 algorithm is merely several matrix-vector

products (each product may cost O(N2
z ) operations for an Nz

× Nz matrix) in each time stepping. In our case, we choose
h = �s = 1/Ns with Ns the number of steps along the chain
contour.

B. Construction of matrix L

To construct L on the CGL grid, we approximate the
function q(z) by a truncated Chebyshev polynomial expan-

sion, q(z) ≈
Nz∑

n=0
anTn(z) where Tn(z) = cos (nz) is the Cheby-

shev polynomial. Using the idea of collocation, the derivatives
of q(z) with respect to z could be obtained from the Chebyshev
differentiation matrix D whose elements are given by27

Djk = γj

γk

(−1)j+k

zj − zk

for j 
= k, (13a)

Djj = −
Nz∑

j 
=k=0

Djk for j 
= 0, Nz, (13b)

D00 = −2N2
z + 1

6
, DNzNz

= 2N2
z + 1

6
, (13c)

where γ j = 2 if j = 0 or Nz, otherwise γ j = 1. D can be viewed
as a higher order operator (global, using all grid points) to
compute the first order derivative of a function in contrast
to the finite difference scheme (local, using only neighboring
grid points). Note that D is an (Nz + 1) × (Nz + 1) matrix.
Consequently, we can now construct L from D as long as ap-
propriate boundary conditions are incorporated. For DBCs, it
is no need to solve the MDE on the boundaries because we
know the function values on the boundaries. For NBCs and
RBCs, the function values on the boundaries are unknown and
we shall solve them together with the interior values. Below
we state how to incorporate various boundary conditions into
the matrix L.

1. Homogeneous DBCs

Homogeneous DBC occurs when both κa and κb go to
infinity or equivalently, q(z0) = 0 and q(zNz

) = 0. Then the
MDE has only Nz − 1 unknowns: q(z1), q(z2), . . . , q(zNz−1).
The elements of matrix L are given by

Lij =
Nz∑
k=0

DikDkj , (14)

for i, j = 1, 2, . . . , Nz − 1, meaning that the matrix L is the
sub-matrix of D2 whose first and last rows and columns are
deleted.

2. Homogeneous RBCs and homogeneous NBCs

The case of homogeneous RBCs occurs when κaκb 
= 0.
The matrix L is given by

Lij =
Nz∑
k=0

DikD̂kj , j = 1, 2, . . . , Nz − 1, (15a)
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Lij =
Nz∑
k=0

DikD̂k0 − κbDi0, j = 0, (15b)

Lij =
Nz∑
k=0

DikD̂kNz
− κaDiNz

, j = Nz, (15c)

where D̂ij = 0 if i = 0 or Nz, otherwise D̂ij = Dij . In prac-
tice, to obtain the matrix L one first computes the matrix prod-
uct DD̂, then subtracts κbDi0 and κaDiNz

from its first and last
columns, respectively.

The homogeneous NBC is a special case of RBC. One
can see this by setting κa = κb = 0. The above algorithm is
also applicable to the mixed NBC-RBC case by setting either
κa or κb to 0 at the NBC boundary.

3. Mixed DBC and RBC

Mixed DBC and RBC occurs when one of the boundary
conditions is DBC. Unfortunately, application of the similar
approaches for homogeneous DBCs and RBCs on this case
fails during our numerical experiments. We thus employ an al-
ternative method proposed by Weideman and Reddy28 based
on Hermite interpolation, which is an extension of Lagrange
interpolation that enables one to incorporate derivative values
in addition to function values.29

For DBC-RBC (the boundary condition at z = zNz
is

DBC), it can be shown that the interpolant of degree Nz

+ 1 below:

pNz+1 =
Nz−1∑
j=0

q(zj )φ̃j (z)

satisfies the interpolation conditions, pNz+1(zj ) = q(zj ),
j = 0, 1, . . . , Nz − 1 as well as the boundary conditions. The
modified polynomials are given by

φ̃0(z) =
[

1 −
(

∂

∂z
φ0(z0) + κb

)
(z − 1)

]
φ0(z), (16a)

φ̃j (z) = 1 − z

1 − zj

φj (z), j = 1, 2, . . . , N − 1, (16b)

where φj(z) on the CGL grid are defined as

φj (z) = (−1)j+1

γj

1 − z2

N2
z

T ′
Nz

(z)

z − zj

for j = 0, 1, . . . , Nz − 1, where γ j = 2 if j = 0 or Nz, otherwise
γ j = 1. It is now straightforward to find the matrix L,

Lij = ∂2

∂z2
φ̃j (zi), i, j = 0, 1, . . . , Nz − 1. (17)

The quantities ∂2

∂z2 φ̃j (zi) may be expressed explicitly in terms

of the quantities ∂2

∂z2 φj (zi), which are the entries of the second-
order Chebyshev differentiation matrix D2.

The matrix L for RBC-DBC is obtained by replacing φ0

and z0 with φNz
and zNz

in Eq. (16a), respectively. As NBC is
a special case of RBC, the matrix L for DBC-NBC and NBC-
DBC is obtained by setting κb = 0 in DBC-RBC and κa = 0
in RBC-DBC, respectively.

C. Evaluation of coefficients ϕl

For small z, direct computation of the coefficients, such
as ϕ1(z) = (ez − 1)/z, suffers from disastrous cancella-
tion errors.24 To overcome such vulnerability, Schmelzer and
Trefethen30 proposed a powerful technique using the complex
contour integral

ϕl(L) = 1

2πi

∫



eτ

τ l
(τ I − L)−1dτ, (18)

where 
 can be any contour in the complex plane that en-
closes the eigenvalues of L. Contour integral of analytic func-
tions in the complex plane is easy to evaluate by means of
the trapezoidal rule, which converges exponentially.30 Since
the MDEs are diffusion type equations, most of eigenvalues
lie on the negative real axis. Therefore, a hyperbolic con-
tour, which encloses the whole negative real axis, is a good
choice.

Here, we employ a hyperbola suggested by Weideman
and Trefethen,31 v = μ[1 + sin(iu − α)] (−∞ < u < ∞)
where v is a complex number whose real and imaginary parts
determine a hyperbolic contour in the complex plane. μ and α

are two constants which control the width and asymptotic an-
gle of the hyperbola. Applying the trapezoidal rule to evaluate
the integral, we have

ϕl(Lh) = μ�

2π

M∑
k=−M

evkh

(vkh)l
(vkI − L)−1 cos(iuk − α), (19)

where 2M + 1 is the number of equally spaced points on the
contour and their spacing is � = 1.0818/M, and uk = k�
and vk = v(uk). According to Weideman and Trefethen,31 we
choose μ = 4.4921M/h and α = 1.1721 which optimize the
accuracy of Eq. (19).

The accuracy of this complex contour integral methods
depends on M and the eigenvalues of Lh. Generally, the larger
the eigenvalues, the bigger M is required to retain the same
level of accuracy. It is known that the largest eigenvalue of
matrix L (Nz × Nz) in this study scales as −N4

z . Therefore, the
accuracy of coefficients ϕl degrades quickly when we increase
the spatial resolution Nz but keep M fixed. The lost of accuracy
of ϕl will further propagate to the ETDRK4 method causing
serious decrease of the accuracy of the final solution, which is
termed as “over-resolution” problem.

For non-diagonal problems such as the matrix L in this
study, we need evaluation of M matrix inverse, which is
expensive. However, as this is done just once before the
time-stepping begins, the impact on the total computing time
should be negligible.

D. Two-dimensional (2D) and three-dimensional
(3D) calculations

The 1D ETDRK4 method described in Secs. III A–III C
can be generalized to enable calculations in higher dimen-
sions. For AB diblock copolymers confined by two parallel
flat surfaces, it becomes particular simple because they are not
confined in the other two dimensions and the periodic bound-
ary conditions can be imposed.
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Here, we take 2D calculations as an example. By per-
forming Fourier transform in x direction, Eq. (6) becomes

∂q̂(kx, z)

∂s
=

(
−k2

x + ∂2

∂z2

)
q̂(kx, z) + f̂ (q), (20)

where q̂ and f̂ denote the Fourier transform of functions q(x,
z) and f (x, z) = −w(x, z)q(x, z) along x dimension, respec-
tively. In practice, f̂ is obtained by first computing f(x, z) in
the real space and then performing an FFT on f(x, z) along
x dimension. Since in each time stepping q̂ is actually com-
puted, we have to perform an additional inverse FFT when-
ever q is needed. We collocate functions on an equispaced grid
x = (x0, x1, . . . , xNx−1)T where xi = iLx/Nx. Lx and Nx are the
length of the calculation cell and the number of grid points,
respectively. Accordingly, the spectral collocation points are
kx,0, kx,1, . . . , kx,Nx−1 with kx,i = 2π i/Lx. It then follows that
for each wavenumber kx,i, there is a 1D MDE to be solved:

∂q̂i(z)

∂s
=

(
−k2

x,i + ∂2

∂z2

)
q̂i(z) + f̂i(q) (21)

for i = 0, 1, . . . , Nx − 1, where q̂i(z) = q̂(kx,i , z) and f̂i(z)
= f̂ (kx,i , z). The above equation can be solved by the same
ETDRK4 method as long as one replaces L with L − k2

x,iI.
Therefore, the total computation cost should be approxi-
mately Nx times larger than the 1D method. The 3D calcula-
tions are almost identical to the 2D calculations except that
an additional dimension (y direction) should be taken into
account, which can be treated similarly as the x dimension.
Extensions to other regular geometries are possible.32

IV. PERFORMANCE OF THE ETDRK4 METHOD

In this section, we conduct a comparison of the perfor-
mance of the ETDRK4 method, the OSS method, and the
OSCHEB method. Instead of carrying out the whole SCFT
calculations, the 1D MDE is numerically solved with a
given potential field w(z) = 1 − 2 sech2[(6z − 3Lz)/4] which
is adopted from the book by Fredrickson.8 The length of the
calculation cell Lz is set to 10.0 for all calculations. It should
be noted that this particular potential field is relatively sim-
ple as compared to the self-consistent field generated by self-
assembly of block copolymers. Thus, it may require higher
spatial and/or temporal resolution to obtain same lever of ac-
curacy. The initial condition is q(z, 0) = 1, for 0 < z < Lz.
The MDE is solved subject to the homogeneous DBCs.

The error is estimated by the relative error in the
normalized single chain partition function, |Q − Q∗|/|Q∗|,
where Q is the computed value and Q∗ is the “exact”
value. Q is computed by numerically integrating the equa-
tion Q = ∫ Lz

0 dz q(z, 1) using the Clenshaw-Curtis quadra-
ture scheme22, 27 or the trapezoidal rule to the CGL grid (for
ETDRK4 and OSCHEB) or the equispaced grid (for OSS),
respectively.

It is critical to obtain the exact solution of the MDE for
error analysis. Unfortunately, the analytical solution of the
MDE with the given potential field is unavailable. As a com-
mon approach we take the numerical solution obtained by the

OSCHEB method using Nz = 8192, Ns = 2 × 105 as the “ex-
act” solution, which will be used for all error analysis below.

A. Convergence in Ns

In this part, the effect of contour step �s = 1/Ns on the
accuracy of the calculations is analyzed. We carried out a se-
ries of numerical experiments with various contour step for
fixed spatial discretization number Nz. The results are shown
in Figure 1, which reveal that the ETDRK4 methods are supe-
rior to both OSS and OSCHEB methods in two aspects. First,
the ETDRK4 method is more accurate for all spatial resolu-
tion given the same contour step. In Figure 1(c), we find that
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FIG. 1. Relative error in the normalized single chain partition function Q for
the OSS, OSCHEB, and ETDRK4 solutions of the MDE as a function of the
contour step �s at fixed Nz with values of (a) 32, (b) 64, (c) 128, and (d) 256.
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the error of the ETDRK4 methods is down to 10−11 at �s
≈ 0.01, while the error of both OSS and OSCHEB methods is
larger than 10−5. Moreover, the flatten of the error profiles of
OSS and OSCHEB methods at low �s region implies that it
is hardly possible to make errors less than 10−9 and 10−5 by
decreasing �s for the OSS and OSCHEB methods, respec-
tively. Second, the error of the ETDRK4 methods decreases
much faster than the other two methods for fixed spatial res-
olution. The fourth-order convergence rate in time stepping
is confirmed by the slope of the linear part of the error pro-
file of the ETDRK4 methods, while the error of the OSS and
OSCHEB methods decreases only as O(�s2).

Comparing the four plots in Figure 1, we also notice that
the accuracy of both OSS and OSCHEB methods improves
as the increase of Nz, while the accuracy of the ETDRK4
methods is worse at Nz = 256 than that at Nz = 128, which
indicates that the ETDRK4 method may suffer from the over-
resolution problem. Therefore, practically it is important to
keep the spatial resolution in a suitable region for the ET-
DRK4 methods.

B. Convergence in Nz

In this part, we examine the convergence properties of the
ETDRK4, OSS, and OSCHEB methods with respect to the
spatial resolution. Two sets of numerical experiments have
been done for various spatial resolution by fixing contour
steps at �s = 10−5. As shown in Figure 2(a), the Chebyshev
calculations including the ETDRK4 and OSCHEB methods
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FIG. 2. The relative error in Q as a function of spatial resolution Nz at fixed
contour step �s = 10−5. Down triangle: OSS; up triangle: OSCHEB; disk:
ETDRK4. The function is plotted in (a) log-log scale, and (b) semilog scale.
Note the different range of Nz in these two plots.

exhibit a much more sharper decrease of the error than that of
the OSS method. In the log-log plot of the error as a function
of Nz, the error of the OSS method decreases linearly and the
slope is −1.993 obtained by a linear fit of the linear part of
the OSS profile in Figure 2(a), suggesting that this method is
only second-order accurate in spatial resolution.

By plotting the error in semilog scale as shown in
Figure 2(b), it becomes clear that the ETDRK4 and OSCHEB
methods both converge exponentially (linear decrease of the
error in the semilog plot indicates the exponential conver-
gence), as expected. However, the OSCHEB method begins
to lose the spectral accuracy at Nz = 64, much earlier than the
ETDRK4 method which begins at Nz = 128. Consequently,
the ETDRK4 method can reach much better accuracy than the
OSCHEB method for a fixed contour step size. Note that Nz

= 128 is the spatial resolution that the ETDRK4 method be-
gins to suffer from the over-resolution problem. It means that
the ETDRK4 method could retain the spectral convergence
property until the over-resolution problem occurs.

C. Computational cost

We compare the computation cost of various MDE
solvers with respect to the spatial resolution by counting the
computation time. All methods are implemented in Python
and timing results were collected with the aid of the Python
package cProfile. All benchmarks were performed on a
2.50 GHz Intel Xeon CPU and the results are presented in
Figure 3.

Since the initialization of ETDRK4 involves evaluation
of RK coefficients ϕl, which costs significant amount of time
when Nz is large. Apart from the total computation time,
the “core” computation time which excludes the initialization
contribution is also reported. As can be seen in Figure 3(a),
for the OSS and OSCHEB methods the total computation
time and the “core” computation time are almost identical,
while for the ETDRK4 method they differs in nearly an order
of magnitude. Fortunately, for SCFT calculations the initial-
ization is only done once before the relaxation procedures.
Therefore, the impact of this initialization becomes less and
less important when the number of iterations gets larger. This
fact should be made clear in Sec. V.

Figure 3(a) shows that the OSS method is the fastest
method thanks to the utilization of the FFTs. The profile be-
comes linear for large Nz which agrees with its computational
complexity O(Nz ln Nz). Although the OSCHEB method
shares the same complexity as the OSS method, it costs much
more time. It implicates that the coefficient preceded the com-
plexity of the OSCHEB method is very large. For small and
modest value of Nz, the coefficient is relatively large that the
computational cost of the OSCHEB method exceeds that of
the ETDRK4 method which has complexity O(N2

z ) in theory.
For conventional SCFT calculations, the relevant value of Nz

ranges from tens to several hundreds. This value also lies in
the practical region. For Nz larger than 103, the computation
time for both OSCHEB and ETDRK4 methods quickly grows
to a prohibited amount.

The above benchmark only gives a crude impression on
the performance of the three algorithms. Although OSS is
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FIG. 3. (a) Computation time as a function of spatial resolution Nz for algo-
rithms OSS, OSCHEB, and ETDRK4. The contour step �s is fixed. “Total”
means the total time for a full solution while “core” means the computation
time excluding the initialization before actual time stepping. Note that for
both OSS and OSCHEB, the total time and the core time of both OSS and
OSCHEB are so close that their corresponding symbols are superimposed.
(b) Relative error in Q as a function of “core” computation time for algo-
rithms OSS, OSCHEB, and ETDRK4. Different computation times corre-
spond to different spatial resolution which can be read from (a). The number
after the algorithm name in the figure legend stands for contour step size.

faster than OSCHEB and ETDRK4 for the same spatial res-
olution and contour step size, it has been shown that it con-
verges only as N−2

z as compared to the spectral convergence
of the other two. Thus, to achieve the same accuracy as OS-
CHEB and ETDRK4 methods, the OSS method needs to be
done with much higher spatial resolution as well as a much
smaller contour step size. Therefore, it is expected that the
OSS method could be less efficient than the other two algo-
rithms. A better way to address the efficiency of these algo-
rithms is to plot the error as a function of the “core” com-
putation time. Such a plot is shown in Figure 3(b) where the
solid symbols are obtained by numerically solving the MDEs
with contour steps fixed at 5 × 10−3. To reduce the error in
fixed contour step size, one needs to increase the spatial reso-
lution leading to the increase of the computation time. For all
three algorithms, the error first decreases with the computa-
tion time. For low accuracy calculations (the error larger than
10−6), the OSS method is the most efficient one. However,
the best accuracy can be achieved by both OSS and OSCHEB
methods is only 10−6. Further increase of the computation
time hardly improves the accuracy. On the contrary, the ET-
DRK4 method can further reduce the error to 10−11 with a
computation time which is comparable to the cost of the OSS
method for the accuracy of 10−6. The increase of error for last
three data points of ETDRK4 is caused by the over-resolution

problem because we did not raise the number of points in the
complex contour when we evaluate the ETDRK4 coefficients
with large Nz.

To improve the accuracy of the OSS and OSCHEB meth-
ods to the level of the best accuracy of the ETDRK4 method,
we must drastically reduce the contour step size which costs
tremendous amount of the computation time. In Figure 3(b),
the results of the OSS and OSCHEB methods with �s = 5
× 10−5 are also presented. With this tiny contour step size,
the error of the OSS and OSCHEB methods can indeed be
reduced to the magnitude of 10−10. However, the computa-
tional time is several orders of magnitude larger than that
of the ETDRK4 method. Combining all the above facts, we
could safely conclude that the ETDRK4 method is the method
of choice for obtaining high accuracy solution of the MDEs.
Even for low accuracy calculations, it is still better than the
OSCHEB method. One would also expect that above conclu-
sion is still valid for calculations in higher dimensions where
polymers are confined in one dimension requiring only 1D
ETDRK4.

V. PERFORMANCE OF FULL SCFT CALCULATIONS

In this section, we compare the computational efficiency
of the full SCFT calculations utilizing the OSCHEB and
ETDRK4 methods. 1D numerical experiments are done for
homopolymer brushes grafted onto flat surfaces subject to
homogeneous DBCs. The total computation time, the time
consumed by solving MDEs, and the time cost of the initial-
ization are summarized in Figure 4. In both OSCHEB and
ETDRK4 SCFT calculations, the solution of the MDEs is the
most time-consuming step, as indicated by the fact that the
total and MDE computation times are almost identical for
both methods (see Figure 4). The relatively larger initializa-
tion time of the ETDRK4 method is due to the evaluation of
the RK coefficients. Note that the initialization is only done
once for each SCFT calculation, meaning that its computa-
tion time does not vary with the number of SCFT iterations.
Therefore, the importance of the initialization diminishes con-
siderably in a practical SCFT calculation, where 102–103 it-
erations are required. For all spatial resolutions (Nz ≤ 2048)
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FIG. 4. Computation time for performing 100 SCFT iterations as a func-
tion of spatial resolution with the OSCHEB and ETDRK4 algorithms. Both
boundaries are DBCs. Square: OSCHEB; disk: ETDRK4; dotted line: initial-
ization; dashed line: MDE; solid line: total.
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FIG. 5. The development of the residual error of SCFT calculations of poly-
mer brushes with computation time which excludes the initialization proce-
dure for the ETDRK4 and OSCHEB methods. Both boundaries are DBCs.
For the main plot, Nz and �s are fixed at 128 and 0.005, respectively. The
inset figure plots the decreasing rate of the residual error as a function of
the spatial resolution. The solid line in the main plot and the disk symbol in
the inset plot are for the ETDRK4 method, while others are for the OSCHEB
method.

we tested, the ETDRK4 SCFT calculations consume less time
than the OSCHEB SCFT calculations.

Based on above benchmark results, it is not conclusive
enough to determine which algorithm is more efficient. A
more practical way to assess the efficiency of the two algo-
rithms is to compare the computation time required to achieve
a given accuracy. In Figure 5, we plot the residual error of the
SCFT equation of homopolymer brush system as a function of
computation time which excludes the initialization procedure
for the ETDRK4 and OSCHEB methods at Nz = 128 and �s
= 0.005. The error of both methods decreases linearly in the
semilog plot, meaning that the SCFT algorithms converge ex-
ponentially. Although the ETDRK4 and the OSCHEB SCFT
methods both give spectral accuracy, the decreasing rate of the
former is much faster than the latter. We also plot the decreas-
ing rate of the error, which is the absolute value of the slope
obtained by a linear fit of the error profile, for both methods
as a function of the spatial resolution in the inset of Figure 5.
As can be seen, for Nz < 512 which is the spatial resolution
of practical importance, the decreasing rate of the ETDRK4
SCFT algorithm is much larger than that of the OSCHEB
algorithm.

VI. APPLICATION IN AB DIBLOCK COPOLYMERS
CONFINED BY INTERACTING SURFACES

Block copolymers belong to an important class of poly-
meric materials that can self-assemble into complex mi-
crostructures on the scale of 10 to 100 nm, making them
an ideal candidate for nanotechnologies. Confining block
copolymers in two parallel interacting surfaces introduces
two new parameters, namely, the surface interactions between
polymer segments and confining surfaces and the commensu-
rability which describes how well the film thickness matches
the natural period of the block copolymers in bulk. The com-
petition between these two factors may lead to even richer
microstructures which have been revealed by both experi-
mental and theoretical studies. Among various theoretical and

numerical methods, SCFT has been proven to be a power-
ful tool in prediction of microphase morphologies of block
copolymers both in bulk and under confinement. A com-
mon approach to describe the surface interactions between
polymers and confining surfaces is the introduction of sur-
face fields to the SCFT equations combined with appropriate
boundary conditions, usually DBCs. The form of the surface
fields is chosen mainly based on numerical considerations.
However, these surface details are not completely irrelevant
and their effects should be addressed carefully as suggested
by Ref. 12. Fortunately, our ETDRK4 SCFT method circum-
vents this difficulty by replacing the surface fields with appro-
priate boundary conditions.

In this part, we demonstrate the feasibility of our ET-
DRK4 SCFT method using the same example as Ref. 12,
where lamellar forming AB diblock copolymers (f = 0.5) at
an intermediate degree of segregation (χN = 20) are con-
fined by two parallel flat surfaces with either symmetric or
anti-symmetric surface affinities. The commensurability pa-
rameter, D/L0, is fixed at 1.2, where L0 = 4.044Rg is the
period of the lamellar structures in bulk.12 At this commen-
surability, the domain spacing of parallel lamellae will be sig-
nificantly frustrated for both symmetric and anti-symmetric
surface affinities, the ideal film thicknesses correspond to
which should be mL0 and (m + 1/2)L0 with integer m, re-
spectively. Therefore, at weak surface affinities the frustrating
effect overwhelms the gain of energy by covering preferred
blocks on the walls, leading to perpendicular orientation of
the lamellae.

Figure 6 shows calculated possible morphologies through
initializing the fields wA and wB with random configura-
tions and varying the surface affinities. Parallel lamellae are

(a) (b) (c)

(d) (e) (f)

FIG. 6. Possible morphologies of symmetric AB diblock copolymers con-
fined by two flat surfaces with distance fixed at D/L0 = 1.2 at segregation χN
= 20, calculated by the ETDRK4 SCFT method with random initializations.
The size of the calculation box is Nx = 64 and Nz = 32. Top and bottom edges
in each plot are confining walls. Morphologies in each plot are denoted as
(a) L

||
2 , (b) L

||
3 , (c) L

||
4 , (d) LM

1 , and (e) and (f) L⊥. In (a)–(e), both walls attract
A blocks; in (f) the top and bottom walls attract B and A blocks, respectively.
Red and blue represent the A-rich and B-rich domains, respectively.
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denoted by L||
ν with ν the number of the A/B interfaces

(see Figures 6(a)–6(c)), while L⊥ denotes the perpendicular
lamellae (Figures 6(e) and 6(f)). Only one mixed lamellar
morphology containing a parallel layer (LM

1 ) appears in the
random initiation calculations. We noticed that the perpen-
dicular lamellae both in L⊥ and LM

1 phases are curved, in
consistent with previous SCFT calculations and Monte Carlo
simulations.12, 14, 33 In Figure 6(d), both surfaces attract A
blocks, and thus A segments tend to wet both surfaces, leading
to contact angles less than 90◦ for A-rich domains. Accord-
ing to our numerical results, the contact angle decreases with
the increase of the surface affinity. Finally, the near surface
part of A-rich domains merges together with the neighboring
A-rich domains to form a continuous wetting layer on both
surfaces. For antisymmetric surface affinities, such as that in
Figure 6(f), the contact angle of the A-rich domain on the top
surface where it prefers B blocks becomes larger than 90◦.
The behavior of the contact angle should be well explained
by Young’s equation as demonstrated by Hur et al.22

To determine which phase is stable for AB diblock
copolymers confined by two surfaces with symmetric sur-
face affinities, the fields corresponding to the phases shown in
Figures 6(a)–6(e) are used as initial input for SCFT calcu-
lations. After the calculations converge, the free energy of
each phase is plotted as a function of the surface affinity (κa

= κb) shown in Figure 7. It is now clear that at weak surface
affinities, the perpendicular lamellae are stable while L

||
2 is

the stable phase at strong surface affinities. The intersection
of the L

||
2 and L⊥ curves around κa = 0.57 indicates an order-

order transition point. Matsen12 calculated a similar plot but
at a different commensurability where L

||
2 and L

||
4 are equal in

free energy. In their plot, L
||
2 and L

||
4 share a common curve

and the free energy curve of L⊥ bends down at strong sur-
face potential. And there is no intersection of the L

||
2 and L⊥

curves. At the commensurability D/L0 = 1.2 studied here, L
||
2

and L
||
4 split into two approximately parallel curves and the

free energy of L⊥ changes little with the surface affinity.
As in the study of Ref. 12, the slope of the free energy

curve can be roughly understood by the strong-segregation
theory (SST). The slope is given by 2(1 − ψa − ψb)/D, where
ψa is the fraction of A segments at z = 0 surface and ψb is
the same for that at z = D surface. In both L

||
2 and L

||
4 , both
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FIG. 7. Free energies F of the phases shown in Figures 6(a)–6(e) as a func-
tion of surface affinity κa. Both walls have the same surface affinities, i.e., κa

= κb. The lateral size has been adjusted to obtain the lowest free energy.

walls are covered by A blocks leading to ψa ≈ ψb ≈ 1.0,
which produces identical negative slopes. On the other hand,
ψa = ψb = 0.5 at κa = 0 in L⊥ gives zero slope. Further
increase of κa should attract more A blocks onto the walls
(note the curvature of the A-rich domain near the walls in
Figure 6(e)), which may result in a slightly negative slope.
However, this effect is far less significant here than that in the
study of Matsen.12 The slope of LM

1 in Figure 7 is about a
half of the slopes of L

||
2 and L

||
4 . It can be explained similarly

that ψa ≈ 0.5 for the wall covered by perpendicular domains
and ψb ≈ 1.0 for the wall covered by parallel A-rich domain.
Finally, in L

||
3 phase ψa ≈ 1.0 while ψb ≈ 0, and therefore the

slope is almost zero in consistent with the calculation results.
SCFT calculations have not been performed for anti-

symmetric surface affinities in the study of Matsen.12 Based
on SST calculations, the author argued that LM

ν phases are
unstable for anti-symmetric surface affinities. Using our ET-
DRK4 SCFT methods, we have performed calculations at the
commensurability D/L0 = 1.2 and the results are presented
in Figure 8. The surface affinities are chosen to be equal in
strength, i.e., κa = −κb. Since the LM

1 phase is asymmet-
ric along the wall normal direction, it exists two configura-
tions for anti-symmetric surface affinities: LMa

1 and LMb
1 . The

parallel A-rich domain covers the wall that attracts A blocks
in LMa

1 while in LMb
1 the perpendicular domains cover the

wall that attracts A blocks. In Figure 8, we find that LMa
1 is

more stable than LMb
1 and its free energy curve has a negative

slope rather than a positive one like LMb
1 . The difference of

the sign of the slopes of these two phases are well explained
by the SST formula mentioned above by noticing that ψa

≈ 1.0 and ψb ≈ 0.5 in LMa
1 phase while ψa ≈ 0.5 and ψ

≈ 0 in LMb
1 . The stability relation between LMa

1 and LMb
1 im-

plies that perpendicular domains contribute less than parallel
domains in reducing free energy by covering attractive sur-
faces. Both LMa

1 and LMb
1 phases are less stable than the L

||
3

and L⊥ phases in the whole range of surface affinities we stud-
ied, agreeing with the assertion of Matsen.12 Moreover, there
is also an order-order transition from L⊥ to L

||
3 by enhancing

the surface affinities.
Two-dimensional calculations are sufficient for above

lamella-forming diblock copolymers, while cylinder-forming
and other asymmetric block copolymers require three-
dimensional calculations to reveal additional information in
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FIG. 8. Similar to Figure 7 except that anti-symmetric surface affinities (κa

= −κb) are considered.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

202.120.224.53 On: Tue, 10 Jun 2014 02:44:37



224101-11 Y.-X. Liu and H.-D. Zhang J. Chem. Phys. 140, 224101 (2014)

FIG. 9. Possible morphologies of cylinder-forming AB diblock copolymers (f = 0.2) confined by two flat surfaces with distance fixed at D/L0 = 1.2 at
segregation χN = 40, calculated from the ETDRK4 SCFT method with random initialization. The size of the calculation box is Nx = Ny = 32 and Nz = 24.
The physical size of both lateral dimensions are L0. Top and bottom surfaces in each plot are confining walls. In (a)–(d), both walls attract A blocks; in (e)–(h)
both walls attract B blocks. The surface affinities are (a) κa = 0, (b) κa = 0.1, (c) κa = 0.2, (d) κa = 0.3, (e) κa = −0.1, (f) κa = −0.2, (g) κa = −0.3, and
(h) κa = −0.5. Red and green represent the A-rich and B-rich domains, respectively. Each plot is obtained by repeating the calculation box three times in x and
y dimensions.

another lateral dimension. For example, it is possible that
the lamellar structures in 2D systems are actually cylin-
ders in 3D systems.34 As the simplest model system of
cylinder-forming block copolymers under confinement, di-
block copolymers confined by two parallel flat surfaces can
form various microstructures by tuning the film thickness, the
surface affinity, and the corresponding control parameters in
bulk. Possible (stable and metastable) structures include par-
allel/perpendicular cylinders, lamellae, spheres between two
wetting layers of preferred blocks, cylinders between two lay-
ers of half cylinders, and perforated lamellae, as reported in
both experimental and theoretical studies.16, 35

Using our ETDRK4 SCFT method with random initial-
ization, we have identified several interesting metastable mi-
crostructures by sweeping the surface affinity κa from −5.0
to 5.0. The calculations were performed for a diblock copoly-
mer (f = 0.2) at strong segregation (χN = 40) confined by two
parallel flat surfaces with symmetric affinities, which forms a
cylindrical phase with a spacing L0 = 4.30Rg between the cen-
ters of neighboring cylinders in bulk.13 Figure 9 summarizes
all structures in the numerical results. In addition to lamel-
lae and parallel cylinders, we observe a set of hybrid struc-
tures including perpendicular cylinders plus a layer of half
spheres (Figure 9(a)), a layer of half spheres and a layer of
half cylinders on surfaces plus a layer of spheres in between
(Figure 9(b)), two layers of half cylinders on surfaces with
a layer of spheres in between (Figure 9(c)), a layer of half
spheres on surface plus a layer of cylinders (Figure 9(e)),
and two layers of cylinders with different orientations
(Figures 9(f) and 6(g)).

For surfaces that attract A blocks, A segments tend to
distribute on the surfaces. But at weak surface affinities, the
gain of free energy by covering A segments is so small
that the distribution of A segments in the interior is also
possible, just like the mixed lamellar morphologies of the
symmetric diblock copolymers. At strong surface affinities
(κa > 0.4), all calculations with random initiation result in
lamellae, strongly implying that the lamellar phase is the
stable phase in this case. As the case of surfaces attracting
B blocks, two layers of cylinders with different orientations
(parallel/orthogonal/diagonal) randomly occur for different

surface affinities. The occurrence of non-parallel cylinders
may be due to the constraint of the lateral size, which should
be varied to relax the pseudo-stress. Therefore, we believe that
the stable phase is parallel cylinders at strong surface affinities
in this case.

Heckmann and Drossel34 found that numerical inaccu-
racies are not negligible in determination of stable phases.
In their study, the perforated lamellae lose their stability by
merely increasing the number of collocation points, which
clearly shows the influence of the accuracy of the numeri-
cal algorithm. Therefore, to determine the stable phase in 3D
space, one should choose more accurate algorithms. Our ET-
DRK4 SCFT method serves as a good candidate because it is
a promising method that delivers high accuracy in solution of
the MDEs.

VII. CONCLUSION

In summary, we have shown that the exponential time dif-
ferencing method on CGL grid, ETDRK4, is a powerful tool
for solving MDE with non-periodic boundary conditions. It
exhibits fourth order accuracy in time (contour) stepping as
compared to the second order accuracy often found in the lit-
erature. It retains spectral accuracy for non-periodic problems
as those pseudospectral methods for periodic problems. And
it outperforms a similar Chebyshev based algorithm devised
by Hur et al. in the convergence rate with respect to number
of grid points. The ETDRK4 method has been successfully
incorporated into the standard SCFT algorithm and its perfor-
mance is addressed. The ETDRK4 SCFT algorithm also re-
tains the exponential convergence rate. Using this method, we
can reproduce the results in the literature in higher accuracy
with less contour steps and fewer grid points. Equivalently, to
achieve the same accuracy, our ETDRK4 SCFT method costs
less computation time thus is more efficient.

To demonstrate the power of our ETDRK4 SCFT
method, we apply it to solve the SCFT equations of diblock
copolymers confined by interacting surfaces. For diblock
copolymers confined by two parallel surfaces, 2D and 3D cal-
culations are performed for symmetric and cylinder-forming
diblock copolymers, respectively. At low surface affinities
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perpendicular lamellae are stable phases for symmetric di-
block copolymers, while parallel lamellae L

||
2 (symmetric sur-

face affinity) and L
||
3 (anti-symmetric surface affinity) become

stable when the surface affinity exceeds a transition value.
The mixed lamellar phase is proved to be metastable for both
symmetric and anti-symmetric surface affinities. For cylinder-
forming diblock copolymers, our ETDRK4 SCFT calcula-
tions revealed several novel hybrid structures at low surface
affinities. This method can be readily extended to any non-
periodic problems provided that polymers are confined in reg-
ular geometries such as disk, cylinder, and sphere in addition
to parallelepiped.
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