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ABSTRACT: A new class of thermoplastic elastomers possessing unusual
mechanical properties has recently been discovered in binary blends of A-b-(B-b-
A′)n miktoarm star block copolymers and A homopolymers that spontaneously
form an unusual, thermodynamically stable, aperiodic “bricks-and-mortar” (B&M)
mesophase morphology. The B&M mesophase is believed to be stabilized by
thermal fluctuations as in the well-known case of the bicontinuous microemulsion
phase. Here, two-dimensional field-theoretic simulations are used to study the
equilibrium self-assembly of such miktoarm polymer binary blends. As expected,
the B&M mesophase is not present in the mean-field phase diagram obtained with
self-consistent field theory, but complex Langevin (CL) simulations, which fully
incorporate thermal fluctuation effects, reveal dramatic changes to the phase diagram. A region of strong fluctuations results in
the emergent stabilization of the B&M mesophase in a broad composition channel positioned between microphase separation
and macrophase separation envelopes, consistent with experimental observations. Our simulations clarify the topology of the
blend phase diagram and suggest that the B&M mesophase, at least as observed near the order−disorder transition, has no long-
range or quasi-long-range positional or orientational order.

■ INTRODUCTION

In the past two decades, mean-field theories have achieved
remarkable successes in predicting the equilibrium phases of
block copolymers and their alloys with homopolymers.1−5 In
particular, self-consistent field theory (SCFT) has been used
extensively to compute morphologies of ordered mesophases,
order−disorder transitions (ODT), and order−order transitions
(OOT) and to construct phase diagrams.6−15 However, the
validity of SCFT is restricted to concentrated solutions or melts
of high-molecular-weight polymers far from critical phase
transitions.16 Close to such phase transitions, it has been
demonstrated, for example in polyisoprene−polystyrene diblock
copolymers, that SCFT-computed phase diagrams are inaccu-
rate: block copolymer ODT boundaries are shifted to lower
temperatures (higher Flory−Huggins interaction parameter χN),
and the contours of phase boundaries are significantly
distorted.17 These are largely quantitative corrections, except
close to the strictly symmetric case where the disorder-to-
lamellar transition is changed by fluctuations from second-order
to first-order character, breaking the critical point.18,19 This is an
example where the mean-field approach fails in a more significant
“qualitative” way because fluctuation effects become strong
enough to alter the topology of the phase diagram.
The bicontinuous microemulsion (BμE) observed in a ternary

diblock copolymer−homopolymer blend (A-b-B/A/B) is a
second example of a qualitative failure of mean-field theory.20−22

Unlike conventional inhomogeneous phases of block copoly-

mers, such as the lamellar phase (LAM) and the hexagonal
cylinder phase (HEX), the BμE lacks long-range positional and
orientational order: the A-rich and B-rich domains are separated
by undulating interfaces of almost zero mean curvature, with the
individual A and B domains forming continuous random
networks. It has been found that the BμE phase appears in a
narrow channel near the mean-field Lifshitz critical point (LP),
which is destroyed by fluctuations. This BμEmesophase has been
extensively studied experimentally20−22 and theoretically.23−31

Among theoretical approaches, Düchs et al.31 demonstrated that
field-theoretic simulations with complex Langevin (CL)
sampling is a powerful approach for identifying the BμE channel
in the phase diagram and examining the role of fluctuations in
stabilizing the aperiodic BμE morphology.
The CLmethod was originally developed to solve lattice gauge

theories32 with complex actions33 and was introduced to polymer
field theory by Ganesan and Fredrickson.34,35 The method
incorporates fluctuation effects by introducing a Langevin
dynamics to sample complex-valued field configurations.
Thermodynamic observables are then obtained by averaging a
corresponding operator over the generated field configurations.
The method has proven to be broadly applicable for studying
fluctuation phenomena in polymeric assemblies, for example in
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polymer solutions,36,37 melts of block copolymers and polymer
blends,31,35,38 polymer nanocomposites,39,40 and polyelectro-
lytes.41−43 Meanwhile, the method has been advanced by new
algorithms that significantly improve stability, accuracy, and
efficiency44−46 as well as the range of accessible systems47 and
expand the sampling methods available for mapping phase
diagrams.38,48,49

Recently, Shi et al.50 reported a new aperiodic inhomogeneous
phase, which they designated the “bricks-and-mortar”mesophase
(B&M), in a binary blend of S-b-(I-b-S′)3 miktoarm star block
copolymer with polystyrene homopolymer. Here, S and S′
denote blocks of polystrene of different lengths, and I denotes
polyisoprene; each miktoarm star block copolymer consists of
one long polystyrene arm joined to three polyisoprene-b-
polystyrene arms at the polyisoprene ends.51 Blending with
homopolystyrene yields the B&M mesophase, which exhibits a
nanocellular morphology with apparently discrete polystyrene-
rich domains (“bricks”) well dispersed within a continuous
polyisoprene-rich matrix (“mortar”). This cellular nanomaterial
combines high modulus from the discrete polystylene-rich phase
with recoverable elasticity from the continuous rubbery
polyisoprene-rich matrix. A key design parameter in the
miktoarm polymers is the ratio τ = NS/(NS + NS′), where NS
and NS′ denote the degrees of polymerization of the long S arm
and the shorter S′ peripheral blocks. When τ is tuned to the range
of 0.85−0.95,51 the combination of the asymmetric S−I3 junction
and the S/S′ block polydispersity conspire to drive interfaces to
curve strongly toward polystyrene. As a result, the discrete phase
can accommodate an extremely high volume fraction of
polystyrene, rendering the new material hard, yet elastic and
tough. This material thus offers unique mechanical properties,
distinguishing it from traditional thermoplastic elastomers
(TPEs) which are elastic but comparatively soft.
The B&M mesophase shares some common features with the

BμE phase: it is structured but disordered and emerges in the
region of composition between microphase separation and
macrophase separation. It is believed that it is also stabilized by
fluctuations.50 However, as a new discovery, the B&M
mesophase is much less well understood than the BμE phase,
and theoretical insight is needed to guide the design and
optimization of these novel nanocellular materials and TPEs.
In this work we employ two-dimensional CL simulations to

study the phase behavior of a binary blend of miktoarm star block
copolymers and homopolymers. A mean-field phase diagram is
first constructed via SCFT to guide the search for the B&M
mesophase. It is subsequently found that the LAM/HEX
coexistence region in the mean-field phase diagram is destroyed
by strong composition fluctuations, resulting in the stabilization
of the B&M mesophase. The B&M mesophase is also observed
to encroach on the HEX- and LAM-phase regions neighboring
the LAM/HEX coexistence channel. Indeed, for the specific
blend investigated, a stable LAM phase is not observed; in its
place is a region of coexistence (macrophase separation) between
B&M and a micellar phase dilute in mikto-polymer.

■ THEORETICAL FORMULATION
Molecularly Informed Field Theory Model. We consider

a binary blend consisting of nc A1-(B-b-A2)3 miktoarm star
polymers and nh A homopolymers in a volume V. The miktoarm
polymer has one arm (A1) consisting of A monomers joined to
three identical diblock arms (B-b-A2) at the B block ends (see
Figure 1). We assume equal statistical segment lengths, b, for
both A and B monomers and they occupy the same volume v0,

which defines an average monomer number density ρ0 = v0
−1 in

the incompressible limit. The fractional lengths of A1 and A2

blocks can be defined as f1 =NA1
/N and f 2 =NA2

/N, respectively,

whereN =NA1
+ 3(NB +NA2

) is the total number of monomers in
a miktoarm polymer and NK represents the number of
monomers comprising the Kth block. The molecular asymmetry
parameter τ used in ref 51 is thus τ = f1/( f1 + f 2), while the overall
volume fraction of A-type monomers on the miktopolymer is f =
f1 + 3f 2. The length of each B block relative toN is given by (1 −
f)/3, and we define the length of the homopolymer relative to N
to be α. The composition of the homopolymer in the blend is ϕh
= nhαN/Nt, where Nt = ncN + nhαN is the total number of
segments from all chains in the volume V.
We derive the field-theory model for such a binary blend

closely following the procedure presented in the monograph by
Fredrickson.4 More recent advances in models for field-theoretic
simulations have yielded an understanding of how to avoid UV
divergences and stability difficulties in sampling the field theory
by redefining the model to contain no pathological or singular
features. We follow the same approach as Delaney and
Fredrickson38 in smearing the particle centers by convolving
with a normalized Gaussian function46,52 of width a, which is
equivalent to replacing contact interactions with soft Gaussian
potentials, and admitting a small but finite compressibility to the
melt. This type of model has been shown38 to offer significant
improvements in CL sampling stability and to make predictions
of phase boundaries, in quantitative agreement with soft-
potential particle simulations. However, as a consequence of
the smearing procedure, the χN parameter, while playing the
traditional role of controlling phase separation, is renormalized
and should not be interpreted as the χN that appears in Leibler’s
RPA.38

The canonical partition function of our smeared, weakly
compressible melt model can be written as

∫ ∏
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where n = nc + nh is the total number of polymer chains and ri
denotes the conformation of the ith polymer chain. Note that all
energies are scaled by kBT, where kB is the Boltzmann constant
and T is the temperature.
The configuration of the ν arm of miktopolymer molecule i ∈

[1, nc] is described by a continuous space curve ri
ν(s), where the

contour parameter s ∈ [0, Nν] is measured from the free end of
the ν arm. Similarly, the configuration of the homopolymer chain
of index i ∈ [1, nh] is described by ri

h(s) with s ∈ [0, αN]. The
energetic contribution due to bond linkage for a continuous
Gaussian chain model is given by
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Figure 1. Schematic illustration of the architecture of the miktoarm star
block copolymer, A1-(B-b-A2)3, in a binary blend with A homopolymer.
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The energy arising from the interaction between A and B
monomers is modeled by a modified Flory−Huggins interaction
of strength, χ

∫χ ρ ρ= ̆ ̆U v r r rd ( ) ( )1 0 A B (3)

The microscopic monomer densities are
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where ΩK includes all contour positions of K-species blocks, and
the smeared density operators are then obtained by convolving
ρ̂K with Γ(r;a) = (2πa2)−3/2 exp(−r2/2a2): ρ̆K(r) = (Γ*ρ̂K)(r).
The final energetic contribution, U2, is a Helfand potential

∫ζ
ρ ρ ρ= ̆ + ̆ −U

v
r r r
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0
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which allows local deviations of the total density from ρ0 with
extent controlled by the Helfand compressibility coefficient ζ.
Performing Hubbard−Stratonovich transformations on the

partition function in eq 1 requires introduction of two auxiliary
fields and leads to a field theory
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where the coefficient 0 contains the contribution from an
equivalent ideal gas of miktoarm and homopolymer continuous
Gaussian chains, an energy shift from completing the square of
the interaction terms, and Gaussian denominators of the auxiliary
fields.38 C = ρ0Rg

3/N is the dimensionless chain number density,
acting as a Ginzburg parameter, which scales the Hamiltonian
and controls the relative importance of composition fluctua-
tions,4 =R b N/6g is the radius gyration of a reference linear
chain of length N, and all spatial coordinates r and the volume V
have been scaled to units of Rg and Rg

3. The fields wA = iw+ − w−
and wB = iw+ + w− are conjugate to ρ̆A and ρ̆B, respectively.
The normalized single-molecule partition function of

miktoarm polymers, Qc, can be evaluated as

∫ ∏Γ* Γ* = =
ν

ν νQ w w
V

q s Nr r[ , ]
1

d ( , )c A B
(9)

where the propagators qν(r,s) describe the probability of finding a
monomer indexed by s at position r by propagating from the free
end of arm ν. These propagators satisfy the following Fokker−
Planck equations

∂ = ∇ − Γ*ν ν ν
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subject to initial conditions qν(r,0) = 1 and wν(r;s) = wA(r) for s∈
ΩA and wν(r;s) = wB(r) otherwise. Similarly, the normalized

single-molecule partition function of homopolymer chains is
given by

∫ αΓ* = =Q w
V

q s Nr r[ ]
1

d ( , )h A h (11)

where the propagator qh also satisfies eq 10 with the field wA.
Backward propagators, q†, initiated from the junction of the

star polymer and from the s = αN end of the homopolymer are
required to evaluate A and B monomer densities. These
propagators also satisfy eq 10, but for the miktoarm polymer
are subject to different initial conditions reflecting the tethering
constraint at the star junction: qν

†(r,0) =∏μ≠νqμ(r, s = Nμ). The
homopolymer, which is free at both ends, retains the initial
condition qh

†(r,0) = 1 for the backward propagator.
After solving the MDEs, fractional monomer densities ϕK =

ρ̆K/ρ0 are readily obtained using
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These density operators must be averaged over wA and wB field
fluctuations to obtain physical densities.

Self-Consistent Field Theory. Mean-field theory can be
obtained by performing a saddle point approximation to the
integral in eq 7. Under this approximation, the free energy of the
system is determined by configurations of w+ and w− fields at the
saddle point

= * *+ −F H w w[ , ] (14)

The saddle point configurations w+* and w−* are found by solving
the following nonlinear equations

χ ϕ ϕ ζ ϕ ϕ* = + + + −+iw N N
1
2

( ) ( 1)A B A B (15)

χ ϕ ϕ* = −−w N
1
2

( )A B (16)

where the densities ϕA and ϕB can be viewed as implicit
functionals of w+* and w−* through the modified diffusion
equation, eq 10.
Equations 10, 12, 13, 15, and 16 form a complete set of self-

consistent field equations which we solve numerically on a
uniform spatial collocation mesh with periodic boundary
conditions. Equations 15 and 16 are relaxed by a semi-implicit
Seidel (SIS) algorithm,53 while the Fokker−Planck equations
(eq 10) are solved by a pseudospectral second-order operator
splitting algorithm.54,55

For all calculations presented here, we set the compressibility
coefficient to ζN = 100, implying a weakly compressible melt,
and the smearing constant as a = 0.2Rg. The spatial collocation
grid spacing is no larger than 0.2Rg, which we determined is
sufficient to fully resolve the structures and thermodynamic
properties of interest, and the contour step Δs is fixed at 0.005.

Complex Langevin Simulations. Complex Langevin (CL)
simulations have been performed to obtain approximation-free
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solutions to the molecular field theory model. In the CL
technique, a sequence of configurations of the auxiliary fields are
generated by means of the following Langevin dynamics38

λ
δ
δ

η∂ = − +w t
H w
w t

tr
r

r( , )
[{ }]
( , )

( , )t i i
i

i
i

(17)

where ηi(r,t) is a Gaussian noise obeying the fluctuation−
dissipation theorem: ⟨ηi(r,t)⟩ = 0 and ⟨ηi(r,t)ηi(r′,t′)⟩ = 2λiδ(r−
r′)δ(t − t′). Any thermodynamic observable O is obtained from
an average of generated samples of a corresponding field-based

operator Ô: = ∑ ̂Δ
=

ΔO O w[{ }]t
T j

N
i

j t
1

( )T where the total simulation

time is T = NTΔt. The spatial and contour resolutions used are
the same as for SCFT.
We adopt an exponential time differencing with predictor−

corrector (ETDPEC) scheme47 to integrate the Langevin
equations, which significantly improves the stability and accuracy
over simpler algorithms. All CL simulations were performed at an
intermediate fluctuation strength with dimensionless chain
number density C = 20 (N̅ = b6v0

−2N ≈ 10 000). Note that
this value for C is larger than the most appropriate value for
experimental correspondence (C ≈ 7); the resultant weakening
of field fluctuations greatly enhanced stability of the CL time
stepper. The concomitant gain in sampling efficiency allows for
much larger simulation cells and longer annealing cycles than
would otherwise be attainable. We expect qualitative changes of
the phase diagram induced by fluctuation corrections to manifest
also at this higher C value. After equilibration, a total of 5 × 105

samples were collected for each evaluation of the thermodynamic
observable, unless otherwise stated. For all CL simulations, Δt is
set to 0.002, and the calculations are conducted in two-
dimensional (2D) space. The reduction in dimensionality allows
us to conduct CL simulations with unprecedented cell sizes of up
to 110Rg on a side or approximately 1.5 μm for the comparable
experimental system. This has the benefit of providing access to
the microscopy-relevant scales in experiment, but obviously our
results should be interpreted cautiously, as fluctuation-induced
phenomena in 3D could potentially have a different character
than in 2D.

■ RESULTS AND DISCUSSION
In the following simulations, we choose f1 = 0.28, f 2 = 0.04, and α
= 0.14, roughly corresponding to the experimental case of
Mn(PS) = 80.5 kg/mol, Mn(PS′) = 11.0 kg/mol, Mn(PI) = 56.0
kg/mol, andMn(hPS) = 44.6 kg/mol.50 The experimental results
of Shi et al.50 suggest that this particular molecular architecture
gives the widest range of homopolymer volume fraction for
observing the B&M mesophase.
Mean-Field Phase Diagram.Themean-field phase diagram

shown in Figure 2 was obtained by comparing free energies of
various phases computed by SCFT calculations. Inspired by the
experimental observations, only the lamellar (LAM), hexagonally
packed cylinders (HEX), and disordered (DIS) phases, and their
coexistences, were considered in constructing the phase diagram.
The mean-field phase diagram has a large two-phase region
bounded by DIS−DIS, HEX−DIS, and HEX−LAM coexistence
lines. The HEX- and LAM-phase regions expand rapidly as χN
increases from 25 to 35. Note that the maximum segregation
strength in the computed phase diagram (χN = 35) is
significantly weaker than the experimental segregation strength
(χN = 270),50 for reasons both of computational practicality and
to reveal the ODT envelope. With increasing ϕh, homopolymers
tend to aggregate in the A-rich domains of the ordered structures,

swelling those domains significantly. As ϕh → 1, it becomes
challenging to resolve the highly swollen domains and to
guarantee no unbinding transition. The dashed lines at the top
right corner of the phase diagram are HEX−LAM and LAM−
DIS coexistence lines inferred from the more reliable region. It is
known that the stability of the highly swollen LAM phase is a
consequence of the mean-field approximation.56 With thermal
fluctuations, the swollen LAM phase will eventually become
unstable as ϕh increases and disorder into a micellar region prior
to the SCFT unbinding transition. In addition, a micelle/LAM
coexistence region may exist because the order−disorder
transition between micellar and LAM phases is first order.
Finally, we emphasize that all the DIS phases obtained from
SCFT calculations are structureless on all scales, i.e., homoge-
neous phases. Thus, there is no possibility of capturing a
structured disordered phase like B&M mesophase within the
confines of SCFT.
As just explained, the B&M mesophase cannot appear in the

mean-field phase diagram. However, in the LAM/HEX
coexistence region the free energies of the LAM phase and the
HEX phase are very close, possessing differences in free energy
per chain that differ by about 10−4kBT, indicating that these
phases compete intensely and consequently are vulnerable to
thermal fluctuations. On the basis of these SCFT findings and the
experimental phase diagram, we expect thermal fluctuations will
destroy the long-range positional order of the ordered structures
in the HEX−LAM coexistence channel and consume at least part
of the adjacent LAM phase region to form the B&Mmesophase.
By further increasing the homopolymer volume fraction (e.g., ϕh
≳ 0.8), the B&M mesophase should be swollen by homopol-
ymers and eventually become unstable. In this region, the
experiments observed the coexistence of B&M and a structured
DIS micelle phase, followed by pure micelles for yet larger ϕh.

Emergence of the B&MMesophase. In experiments,50 the
B&M mesophase appears in a wide range of homopolymer
volume fractions from 0.1 to 0.7. This suggests that the B&M
mesophase displaces the mean-field HEX-LAM coexistence
region shown in Figure 2. To test this hypothesis, we initially
conducted two representative two-dimensional large-cell CL

Figure 2. Mean-field phase diagram of the miktoarm polymer binary
blend. HEX, LAM, and DIS one-phase pockets are separated by large
HEX−DIS, HEX−LAM, and DIS−DIS two-phase coexistence regions.
Dashed lines are inferred phase boundaries.
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simulations for the miktoarm polymer binary blend withϕh = 0.4,
χN = 26 (mean-field DIS/DIS coexistence) andϕh = 0.7, χN = 34
(mean-field LAM phase). The simulation for ϕh = 0.4 was
initialized with a randomly generated field configuration, while
the ϕh = 0.7 simulation was initiated with perfect lamellar
structures obtained from SCFT calculations. The instantaneous
snapshots of the A-segment density distributions from the CL
simulations together with the corresponding experimental TEM
images are presented in Figure 3. According to Shi et al.,50 the

morphologies for ϕh = 0.4 and ϕh = 0.7 observed with TEM in
experiments were designated as the B&M mesophase and a
mixture of the B&M mesophase and a PS-rich homogeneous
phase, respectively. The simulated morphologies for both
conditions resemble the experimental results remarkably well,
indicating the importance of a proper treatment of fluctuations
and that CL simulations can indeed be used to study the B&M
mesophase. It is important to note that large-cell simulations
have to be performed to reveal the B&M mesophase because a
large field of view (uninfluenced by the periodic boundary
conditions) is necessary to reveal its aperiodic nature. Unlike the
experimental B&M morphology, however, no evidence of quasi
long-range orientational order has been observed in the B&M
structures obtained by simulations.
To further examine the structure of the B&M mesophase, we

have plotted the density distributions of each block of the
miktoarm polymer as well as the homopolymer in Figure 4. Note
that specifically for the production of these illustrations, the
instantaneous CL-generated morphologies were relaxed to an
SCFT saddle point configuration after formation and equilibra-
tion, indicating that the B&M structures represent metastable
states of the mean-field free energy landscape. It should be noted
that the mean-field free energy of such a metastable B&M state as

computed by SCFT relaxation is higher than the free energy of
the corresponding stable phase shown in the mean-field phase
diagram. This procedure removes high-spatial-frequency noise
and the imaginary parts of the density operators for easier
interpretation of the corresponding image.
In the binary blend we consider here, the length of the

homopolymer is smaller than the A1 block of the miktoarm
polymer and longer than the A2 block. Figure 4a shows that the
short A2 blocks distribute predominantly inside or adjacent to the
B-rich domains. This observation confirms the proposition of Shi
et al.50 that the short A2 blocks act as a dry brush and resist
penetration by the A homopolymer, although not in a
conventional dry brush sense since the A2 blocks largely retreat
into the B domains. This observation is also consistent with
previous SCFT calculations of ABA′ triblock copolymers57 and
neat miktoarm polymers.51 The spatial distributions determined
by SCFT indicate that the increase of unfavorable contacts of A-
and B-monomers is favorable compared to the entropic cost
incurred by stretching to distribute short A2 blocks away from the
B domains. A similar phenomenon has been previously observed
in themorphologies of a binary blend of Styrolux and polystyrene
(PS) homopolymers.58 Styrolux is on average a miktoarm star
copolymer with four arms. All four arms consist of butadiene−
styrene diblocks with a tapered block transition, one of which has
a much longer PS block. Therefore, the architecture of Styrolux
possesses some similarity with our miktopolymer.
Figure 4b reveals that the long A1 blocks mostly distribute near

the periphery of the B-rich domains especially in the vicinity of
junctions of the network of the B-rich domains. Thus, the long A2
blocks are well penetrated by and serve as wet brushes for the
added homopolymers. Figure 4c shows that the discrete A-rich
domains are filled mainly by the homopolymers, as expected by
the connectivity of the miktoarm blocks. In addition, the
homopolymers do not penetrate into the B-rich domains; the
enthalpic penalty would be too great compared to the small
entropy loss for localization. Consequently, we can expect further
addition of homopolymer will continue to swell the A-rich

Figure 3. B&M mesophase in the miktoarm polymer binary blend as
observed by (a, c) TEM experiments and (b, d) CL simulations.
Homopolymer volume fractions are 0.4 and 0.7 for top row and bottom
row, respectively. The discrete, bright domains are A-rich (PS-rich)
domains for both experimental and simulated results. The scale bars for
the experimental images are 200 nm. The sizes of the (b) and (d) images
are 110 × 110 Rg and 65.5 × 65.5 Rg, respectively. Note that Rg is
estimated to be about 15 nm for the experimental miktopolymers.
Images (a) and (c) are adapted with permission from ref 50.

Figure 4. Density distributions of (a) A2 blocks, (b) A1 blocks, (c)
homopolymers, and (d) B blocks in the miktoarm polymer binary blend
as calculated by SCFT initiated from auxiliary fields obtained by
equilibrated CL simulations for ϕh = 0.6 at χN = 34. The field errors are
converged to 10−4. The size of each simulation cell is 61.5 × 61.5 Rg.
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domains until eventually macrophase separation occurs, followed
by an inverted micellar phase.
Fluctuation-Corrected Phase Diagram. From our initial

CL simulations it can be understood that the B&Mmesophase is
an equilibrium thermodynamic phase stabilized by thermal
fluctuations. The mean-field phase diagram should be modified
accordingly to accommodate the new phase. Here we locate
phase boundaries by morphology characterization rather than
detailed free-energy matching due to the computational expense
of the latter.38 We begin by conducting thermal annealing cycles
by varying χN at fixed compositionϕh. Note that a decrease of χN
corresponds to heating and an increase of χN corresponds to
cooling. We subsequently employ isothermal blend composition
sweeps by varying ϕh at fixed χN to efficiently localize phase
boundaries that are almost vertical on χN−ϕh plots, such as those
shown in Figure 2.
We initially vary χN with fixed ϕh = 0.4. Two sequences of

morphologies are presented in Figure 5: the top row shows a
heating cycle (from left to right) while the bottom row shows
cooling (from right to left), where each χN simulation begins

with the final field configuration from the previous. As χN
decreases, the amplitude of the density of A monomers inside the
A-rich domains gradually decreases accompanied by the
reduction of the number of A-rich domains. During such a
heating cycle, the B&M mesophase undergoes a gradual
transition to the homogeneous DIS phase. The bottom row of
Figure 5 shows that the B&M mesophase also emerges
continuously from a homogeneous DIS phase during the cooling
cycle. Furthermore, there is no significant hysteresis between the
heating and cooling cycles, which signals that the transition
between B&M and structureless DIS may be continuous. In fact,
since the emerging B&M phase has the same translational and
rotational symmetries (in the ensemble average) as the
unstructured DIS phase, we conclude that they are one and the
same and that no strict phase transition, even a continuous one,
separates them. Nonetheless, it is useful to construct a “pseudo-
phase-transition” boundary to approximately indicate where
significant structure emerges in the disordered phase. For this
particular case, the pseudotransition point is determined to be at
approximately χN = 22.5 forϕh = 0.4 based on the criterion of the

Figure 5. Instantaneous snapshots of the morphologies of the miktoarm polymer binary blend at ϕh = 0.4 under thermal annealing. Top row: χN
decreases from 26 (left) to 21 (right); the starting image of χN = 26 is obtained by performing a CL simulation for 105 steps initiated by random fields at
χN = 26. Bottom row: χN increases from 21 (right) to 26 (left); the starting image of χN = 21 was obtained by a CL run for 5× 104 steps initialized from a
structureless disordered phase. All the subsequent images are obtained by running CL simulations for 5 × 104 steps initiated from the last configuration
of the previous CL simulation. The size of each simulation cell is 110 × 110 Rg. The total density of A monomers is shown in each image.

Figure 6. Instantaneous snapshots of the morphologies of the miktoarm polymer binary blend at ϕh = 0.1 under thermal annealing. Top row: χN
decreases from 34 (left) to 30 (right); the starting image of χN = 34 is obtained by performing a CL simulation for 105 steps initiated by HEX fields as
calculated by SCFT at χN = 34. Bottom row: χN increases from 30 (right) to 34 (left); the starting image of χN = 30 was obtained from a CL simulation
for 5 × 104 steps launched from a structureless disordered phase. All subsequent images are obtained by performing CL simulations for 5 × 104 steps
initiated from the last configuration of the previous CL simulation. The size of each simulation cell is 111.8 × 108.9 Rg. The color bar is the same as in
Figure 5.
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disappearance of discrete A-rich domains during the heating

cycle or the emergence of discrete A-rich domains during the

cooling cycle. Using the same strategy, we have determined

several transition points along the pseudo-DIS/B&M phase

boundary, which are nearly coincident with the blue disorder to

two-phase boundary in the SCFT phase diagram of Figure 2.

Thus, thermal fluctuations destroy the DIS−DIS coexistence

predicted by SCFT and instead gradually and continuously

introduce cellular nanostructure into the single DIS phase as χN
is raised.
The transition between the HEX phase and the DIS phase is

distinctly different from the formation of the B&M mesophase.
Similar CL simulations have been performed for a binary blend
with a lower homopolymer volume fraction (ϕh = 0.1) and χN =
34, where the HEX phase is stable according to the mean-field
theory (Figure 2). A sequence of morphologies from the heating
and cooling cycle is presented in Figure 6. At such a low

Figure 7. A sequence of CLmorphologies of the miktoarm polymer binary blend from a composition sweep inϕh at fixed χN = 34.ϕh increases from 0.1
to 0.95 in steps of 0.05 from left to right and top to bottom. The ϕh = 0.1 simulation was initialized with an SCFT HEX phase and was run for 105 steps.
All subsequent simulations were initiated from the last configuration of the previous simulation and were run for 5 × 104 steps. The size of each image is
111.8 × 108.9 Rg. The color bar is the same as Figure 5.

Figure 8. A sequence of morphologies of the miktoarm polymer binary blend for ϕh = 0.6 and χN = 34 arising from CL simulations at increasing
simulation time. The number in each image denotes the number of simulation steps in units of 1 million steps. The starting image is obtained by a SCFT
calculation of a LAM morphology. The size of each image is 61.5 × 61.5 Rg. The color bar is the same as Figure 5.
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homopolymer volume fraction, the B&M mesophase was not
observed in our simulations. The heating cycle shown in the top
row of Figure 6 indicates that the transition from the HEX phase
to DIS is discontinuous, and a loss of long-range translational
order occurs before the melting of A-rich domains.a During the
cooling cycle, a highly defective HEX morphology develops, as
expected due to the accessible simulation time. The transition as
such is identified as a discontinuous first-order order−disorder
transition with accompanying hysteresis. HEX−DIS ODTs
computed in this fashion are shown as blue points on Figure 9.
At the limit of very high homopolymer composition, CL

simulations reveal a continuous evolution betweenmicelles and a
fluctuating DIS phase upon lowering χN. As with the case of the
B&M to DIS transition, there is no symmetry change in
transitioning between an unstructured DIS phase and a micellar
DIS phase, so there can be no true phase transition. Nonetheless,
we find that the blue macrophase boundary in the reference
SCFT phase diagram of Figure 2 is again the approximation
location where micelle-like structures begin to appear in CL
simulations of the DIS phase.
For intermediate and strong segregation (i.e., χN > 30), phase

boundaries are expected to vary less strongly with χN. In such
cases it proves to be more convenient to locate order−order
transitions by sweeping ϕh at fixed χN. One such isothermal
blend−composition sweep is displayed in Figure 7. For small
homopolymer volume fractions, the HEX phase is stable against
thermal fluctuations. With increasing homopolymer content, the
discrete A-rich domains coalesce into much larger, irregular
domains with no apparent positional or orientational order. This
coalescence eventually destroys the ordered HEX phase and
leads to the formation of the B&Mmesophase for 0.3 < ϕh < 0.7.
Further increase of the homopolymer content causes the
merging of swollen A-rich domains to percolation. Note that
initially in this region most of B-rich domains are also still
connected. We interpret this type of morphology as a
macrophase separation of the B&M mesophase from an A-rich
homogeneous phase, similar to experimental findings.50 Finally,
the B-rich domains become disconnected and break up into short
worm-like micelles at even higher homopolymer volume
fractions (ϕh > 0.8). In short, we can identify three types of
phase transitions: a transition from the HEX phase to the B&M
mesophase, a transition to a macrophase coexistence of the B&M
mesophase and a micellar phase, and finally a transition to a
single micellar phase.
A potential difficulty in interpreting phase equilibria from the

isothermal composition sweeps is that high symmetry phases,
such as LAM, may not spontaneously re-form within accessible
simulation times when transitioning from B&M. To demonstrate
that LAM is indeed unstable to thermal fluctuations, as suggested
by Figure 7, we conducted a long CL simulation initialized from a
perfect LAM structure for a binary blend with ϕh = 0.6 and χN =
34. A representative morphology evolution is shown in Figure 8.
Here CL simulations with up to 7 × 106 steps were carried out to
confirm that the orientational order inherited from the initial
state of the LAM phase spontaneously disappears. For up to 2
million time steps, partial orientational ordering of the domains
persists. However, given sufficient simulation time, all long-range
positional and orientational order vanishes.
By combining these various CL results, we have constructed a

proposed fluctuation-corrected phase diagram shown in Figure 9.
In comparison with the reference SCFT phase diagram that is
superimposed, we find that both ODTs and OOTs are
substantially modified by thermal fluctuations. The region of

HEX phase stability shrinks significantly compared to mean-field
theory, especially at low χN or high ϕh, and the entire mean-field
LAM region is replaced by the B&Mmesophase, two-phase, and
micelle regions. The mean-field two-phase regions, including the
HEX/LAM coexistence and part of the DIS/DIS coexistence, are
further consumed by the large fluctuation-induced B&M
mesophase region. Note that the phase boundaries that enclose
the B&Mmesophase appear to be saturating at high χN, although
the window of B&M stability is weakly expanding up to the
largest segregation strengths explored here. We expect this trend
will continue to the strong segregation regime, where the
experiments were performed (the experimental interaction
strength is estimated to be χN ≈ 270).50 The range of
homopolymer volume fraction over which CL predicts the
B&M mesophase to be stable agrees reasonably well with
experimental observations, although the B&M mesophase was
observed in the experiment for even lower homopolymer volume
fraction than seen here (0.1⩽ ϕh⩽ 0.3). This minor discrepancy
might be explained by the higher C or lower χN used in the CL
simulations or by a long time scale formelting of HEX at lowerϕh
that may have exceeded by the simulation times used. Finally, we
should mention that the B&M mesophase observed in the CL
simulations is clearly a structured phase lacking both positional
and orientational order. In contrast, the B&M mesophase
revealed by TEM in the experimental work shows evidence of
layers and, hence, quasi long-range orientational order. One
possible explanation is that the isotropic B&M mesophase
observed in the simulations at weak to moderate segregation
strength transforms to a “nematic” B&M mesophase at higher
segregation strengths. This phase transition, if it exists, would
likely be weak and first order in character.

■ CONCLUSIONS
In summary, we have performed a series of SCFT and CL
simulations for various compositions and temperatures of a
miktoarm star block copolymer/homopolymer binary blend, and

Figure 9. Complex Langevin fluctuation-corrected phase diagram of the
miktoarm polymer binary blend. The dashed curve at the bottom of the
two-phase region is hypothesized and has not been accurately calculated.
The solid gray lines in the background are mean-field phase boundaries
that are copied from Figure 2 for reference. The unstructured DIS phase
transforms with χN continuously into either the B&M phase or the
micellar phase, depending on blend composition, without any
intervening phase transition.
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mean-field and fluctuation-corrected phase diagrams were
constructed based on these simulations. The unconventional,
aperiodic “bricks-and-mortar” mesophase, previously observed
in experimental work, has been successfully reproduced by two-
dimensional CL simulations for a wide range of homopolymer
volume fractions and segregation strengths χN. It is found that no
true phase transition separates the B&M mesophase and the
homogeneous phase since transformation between the two is
continuous and involves no detectable symmetry breaking or
change of long-range positional and orientational order. For fixed
χN and varying homopolymer volume fraction, the B&M
mesophase appears in a channel between microphase separation
(HEX) and macrophase separation. We have verified that
ordered structures, specifically HEX and LAM, are unstable
against thermal fluctuations and decay to B&M when placed
inside the B&M mesophase region. Thus, our simulations
reinforce the experimental finding that the B&M mesophase is a
thermodynamic equilibrium phase.
It is important to emphasize that our CL simulations were all

carried out in two-dimensional simulation cells, assuming
homogeneity in the third dimension. Future work should
confirm the stability of the B&M mesophase in 3D and
illuminate its three-dimensional morphological nature. More-
over, we identified phase boundaries by a simple visual analysis of
simulated morphologies. While we have taken care to test for
stability and metastability through various annealing procedures,
we cannot guarantee that the identified phase boundaries strictly
map the equilibrium phase transitions. Delaney and Fredrick-
son38 recently demonstrated an approach for generating
complete fluctuation-corrected phase diagrams for block
polymer melts. The method combines several advanced
techniques, including the use of regularized models and field-
theoretic thermodynamic integration for explicit Helmholtz free
energy evaluation of each polymorph.48 In principle, a similar
approach could be used to map out the full phase diagram for this
miktopolymer blend system, although the computational burden
would be significant in the present case. Future methodological
improvements notwithstanding, our current approach for
mapping the B&M mesophasestability limits offers significant
promise as a tool for molecular engineering. Specially, field-
theoretic simulations with complex Langevin sampling can be
used to explore broad architectural or compositional variations in
miktopolymer alloys and to guide modification or improvement
in the physical property profiles of these fascinating materials.
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■ ADDITIONAL NOTE
aWe note that the actual melting scenario is likely to be more
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long-range orientational order, due to the fact that the
simulations were conducted in 2D.
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