Exponential Time Differencing Methods for Numerical Self-Consistent Field Theory

Yi-Xin Liu lyx@fudan.edu.cn

Department of Marcomolecular Science Fudan University Shanghai, China

March 3, 2014

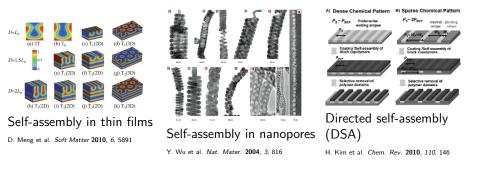
Outline

- Introduction
- Numerical Methods
- Performance of ETDRK4 Methods
- Applications of ETDRK4 Methods
- Summary
- Acknowledgments

Introduction

Self-Assembly of Block Copolymers under Confinements

In practice, most of block copolymers are more or less under confinement.



Surface and interfacial effects play an important role in determining the self-assemble structures.

Introduction

Modeling Surface and Interfacial Effects in Self-Consistent Field Theory (SCFT)

Approach I:

Using a masking technique and introducing surface interaction terms.

Approach II:

Imposing Robin boundary conditions on the modified diffusion equations for propagators.

$$\frac{\partial q}{\partial n} + \kappa q = 0$$
 at the boundary

Introduction

SCFT Methods for Confined Block Copolymers

Operator splitting with Fourier collocation (OSF, OSS, OSC).

- Fast, $O(M \log M)$.
- Often 2nd order convergence in temporal domain.
- Accuracy degradation for Dirichlet and Neumann boundary conditions (DBC and NBC).
- Not applicable for Robin boundary conditions (RBC).

Operator splitting with Cheyshev collocation (OSCHEB).

- $O(M \log M + \alpha M)$ with large coefficients α .
- Often 2nd order convergence in temporal domain.
- Can handle RBC but requires even larger coefficients.

Other real space methods (finite difference), spectral methods.

Numerical Methods

Exponential Time Differencing Scheme

Modified diffusion equation in matrix form

$$\frac{\partial q}{\partial s} = \mathbf{L}q + \mathbf{F}(q, s)$$

In exponential form

$$rac{\partial}{\partial s}e^{-\mathsf{L}s}q=e^{-\mathsf{L}s}\mathsf{F}(q,s)$$

Stepping a single contour step

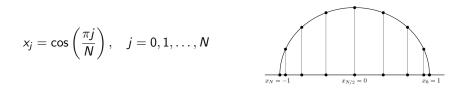
$$q(s_{n+1}) = e^{\mathsf{L}s}q(s_n) + e^{\mathsf{L}s}\int_0^h d\tau \mathsf{F}\left[q(s_n+\tau), s_n+\tau\right]$$

Then a 4th order Runge-Kutta method is employed to approximate the integral.

Numerical Methods

Chebyshev Collocation and Boundary Conditions

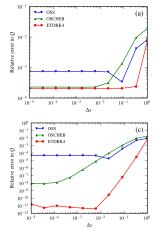
To efficiently handle non-periodic boundary conditions, we discretize spatial variables on a Chebyshev-Gauss-Lobatto grid with a set of points



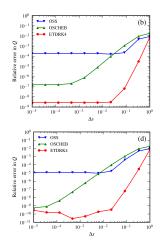
- L can be constructed from the Chebyshev differentiation matrix D.
- Boundary conditions are imposed by incorporating appropriate terms in L.

Convergence in Temporal Domain

ETDRK4 exhibits 4th order accuracy in temporal domain.



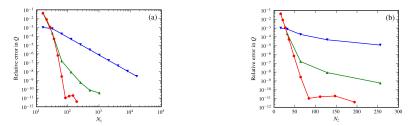
(a) N = 32, (b) N = 64, (c) N = 128, (d) N = 256



Y. X. Liu (Fudan Univ.)

Convergence in Spatial Domain

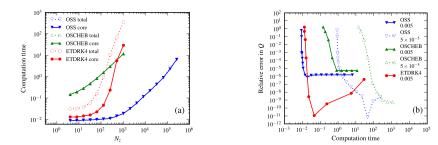
ETDRK4 retains spectral convergence in spatial domain.



(a) log-log plot, (b) semilog plot. Disk: ETDRK4, up triangle: OSCHEB, down triangle: OSS.

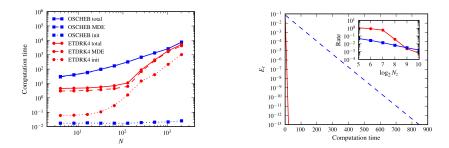
Computational Cost

For high accuracy calculations (error $< 10^{-6}$), ETDRK4 is more efficient than OSS and OSCHEB.



Full SCFT Calculations

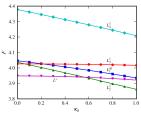
With ETDRK4, the SCFT algorithm also converge exponentially.



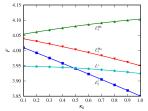
Applications of ETDRK4

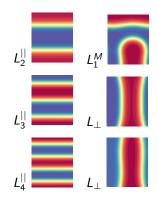
Free Energy Calculations

AB diblock copolymer confined by two parallel flat surfaces.



Symmetric surface interactions



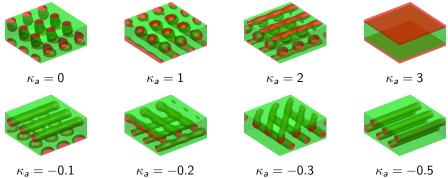


Asymmetric surface interactions

Applications of ETDRK4

3D calculations

AB diblock copolymers confined by two parallel flat surfaces.



ETDRK4 methods

- Fast for high accuracy calculations.
- 4th order accuracy in temporal domain.
- Spectral accuracy in spatial domain.
- Applicable to RBC without significant increase of computational cost.

Limitations

• Computational cost increases rapidly for non-periodic boundary conditions in two or more dimensions.

- Prof. Hong-Dong Zhang
- Prof. An-Chang Shi
- National Natural Science Foundation of China (Grant 21004013)

Thanks!