
The Polyorder Project
A Unified Computing Framework for Self-Consistent Field Theory

Yi-Xin Liu���°	
lyx@fudan.edu.cn

http://ngpy.org

Department of Marcomolecular Science
Fudan University
Shanghai, China

June 28, 2012



Outline

The Road to Polyorder

C++ and Object-Oriented Programming (OOP)

The Design of Polyorder

Framework
Field

Updater

Model

scft

TODO List

Utilities

load, pi, pp
xscft, bscft, simmon
gensym, Gyroid

��° (æ'f) Group Meeting June 28, 2012 2 / 45



The Road to Polyorder

Follow or fork Polyorder at:
https://bitbucket.org/liuyxpp/polyorder

��° (æ'f) Group Meeting June 28, 2012 3 / 45



The SCFT Algorithm

Most SCFT equations should be solved numerically.
The set of SCFT equations are highly nonlinear. A common numerical approach is
to adapt an iterative algorithm. It mainly contains three parts:

1 Solving modified diffusion equations,

2 Quadrature of propagators along the chain contour, and

3 Updating potential fields with various schemes.

ωp = χpsNφs (~r) +
∑
p 6=p′

χpp′Nφp′ (~r) + η (~r)

∂qp
∂s

= ∇2qp − ωpqp φp =
φ̄p
Qpfp

∫ fp

0

dsqp (~r , s) q∗p (~r , fp − s)

��° (æ'f) Group Meeting June 28, 2012 4 / 45



An Intuitive Implementation

PSscft of Dr. Wendi Song
The program is written in C++ but with little OO feature.

Implementation details:

Initialization: PSscft, init, init2

Step 1: laplace, change3D, calc q, propag

Step 2: calc dens

Step 3: renewfield, relax

Other: energy, outdata, close

This implementation is very specific:

Must re-compile after modifying any parameters.

Must re-code almost all the functions for different
polymer architectures.

Difficult to introduce new potential fields (new
interactions).

Difficult to change space dimension.

��° (æ'f) Group Meeting June 28, 2012 5 / 45



Improved version 1 (2010.3)

CFTS
The program is written in C++ also with little OO feature.

Implementation details:

Initialization: allocateMemory,

initParameters, initField

Step 1: fftLaplace new, calc q, propagation

Step 2: calcDensity

Step 3: updateField, relaxation

Other: calcAvg, calcEnergy, outdata,

saveParameters, close

This implementation is also very specific but with some
improvements

Parameters and data I/O using Matlab MAT file.

Eliminate the usage of change3D.

��° (æ'f) Group Meeting June 28, 2012 6 / 45



Improved version 2 (2010.6)

SCFT nApBSCSalt CGC Pseudospectral 1D
The program is written in C++ also with little OO feature.

Implementation details:

Initialization: allocateMemory,

initParameters, initField

Step 1: fftLaplace, calc q, propagation

Step 2: calcDensity

Step 3: updateField 1S, updateField EM,

relaxation

Other: calcFieldError, findMax, calcAvg,

calcEnergy, outData, showRange,

printScreen, saveParameters, close

Improvements

More help functions.

Support manually select the update scheme.

��° (æ'f) Group Meeting June 28, 2012 7 / 45



Things Quickly Mess Up

A new project should be created whenenver there is

Change of polymer architectures
Change of components
Introduction of new interactions
Introduction of new algorithms
Change of boundary conditions
...

A serious problem inherited is: If you want to revise a common function, such as
outData, or add a new parameter, you should update all projects simultaneously.
It’s a disaster!

��° (æ'f) Group Meeting June 28, 2012 8 / 45



C++ and OOP
Reference

Lippman, S. B.; Lajoie, J.; Moo, B. E.
C++ Primer, 4th Ed. 2005, Addison-Wesley Professional

��° (æ'f) Group Meeting June 28, 2012 9 / 45



What is OOP?

Object-oriented programming

Object-oriented programming (OOP) is a programming paradigm using ”objects”
� data structures consisting of data fields and methods together with their
interactions � to design applications and computer programs. Programming
techniques may include features such as data abstraction, encapsulation,
messaging, modularity, polymorphism, and inheritance.

��° (æ'f) Group Meeting June 28, 2012 10 / 45



Key OOP Features

Encapsulation
Inheritance
Polymorphism

Program is viewed as interacting objects
Each object contains algorithms to describe its behavior.
Program design phase involves designing objects and their algorithms.

Figure: An object

��° (æ'f) Group Meeting June 28, 2012 11 / 45



Encapsulation

Builder of a concept has detailed view
User of a concept has abstract view
Advantages of encapsulation

Information hiding
Data Protection
Consistency
Allows change

Figure: An object
��° (æ'f) Group Meeting June 28, 2012 12 / 45



Inheritance

Derive a new class from an existing class.

Create a hierarchy of related classes which share code and interface.

Represent a ”is-a” relationship between objects.

Figure: An inheritance hierarchy

��° (æ'f) Group Meeting June 28, 2012 13 / 45



Polymorphism

The key idea behind OOP.

derived from a Greek word meaning ”many forms”.

Polymorphic objects have same interfaces.

Dynamic binding.

Extensions of the inheritance hierarchy leaves the client’s code unaltered.
Code is localised - each class is responsible for the meaning of its interfaces.

��° (æ'f) Group Meeting June 28, 2012 14 / 45



Example: Shape Library

��° (æ'f) Group Meeting June 28, 2012 15 / 45



Shape in C++

1 class Shape {

2 public:

3 virtual double area() = 0;

4 };

��° (æ'f) Group Meeting June 28, 2012 16 / 45



Rectangle, Circle

1 class Rectangle : public Shape {

2 public:

3 Rectangle(double h, double w):height_(h),width_(w){}

4 double area() const { return height_ * width_; }

5 private:

6 double height_, width_;

7 };

1 class Circle : public Shape {

2 public:

3 Circle(double r):radius_(r){}

4 double area() const { return PI * radius_ * radius_; }

5 private:

6 double radius_;

7 };

��° (æ'f) Group Meeting June 28, 2012 17 / 45



Square

1 class Square : public Rectangle {

2 public:

3 Square(double a):Rectangle(a, a){}

4 double area() const {

5 return this->Rectangle::area();

6 }

7 };

��° (æ'f) Group Meeting June 28, 2012 18 / 45



The Power of Polymorphism

A list of Shape objects

The following function can calculate the sum of area of all the shapes in the list,
even will work when new Shape types are added later on.

1 double CalculateAreaSum(Shape *ps, int N){

2 tot_area = 0.0;

3 for(int i=0; i<N; i++){

4 tot_area += ps->area();

5 }

6 return tot_area;

7 }

��° (æ'f) Group Meeting June 28, 2012 19 / 45



The Design of Polyorder

Follow or fork Polyorder at:
https://bitbucket.org/liuyxpp/polyorder

��° (æ'f) Group Meeting June 28, 2012 20 / 45



Overview

The Polyorder project
Polyorder is a C++ library which aims to ease the development of polymer
self-consistent field theory (SCFT) programs.

The framework

��° (æ'f) Group Meeting June 28, 2012 21 / 45



Grid and Updater

��° (æ'f) Group Meeting June 28, 2012 22 / 45



Grid

1 class Grid {

2 public:

3 Grid(const UnitCell&, int Lx, int Ly, int Lz);

4 // ... More constructors here

5 Grid & operator= (const Grid&);

6 double & operator() (int ix, int iy, int iz);

7 Grid & operator+= (const Grid&);

8 // ... More operator overloading here

9 const string name() const;

10 // ... More parameter interfaces here

11 const double mean() const;

12 // ... More grid operations here

13 virtual void update(); // interface for class hierarchy

14 protected:

15 int Lx_, Ly_, Lz_;

16 // ... More members shared with class hierarchy

17 private:

18 // ... Private members and member functions

19 };
��° (æ'f) Group Meeting June 28, 2012 23 / 45



Density

1 class Density : public Grid {

2 public:

3 Density(const string, const Config&, const Updater*);

4 // ... More constructors here

5 Density & operator= (const Density&);

6 void update(const Propagator &q, const Propagator &qc);

7 void update(const Propagator &q, const Propagator &qc,

8 const Updater*);

9 private:

10 Updater *updater_;

11 void update_(const Propagator &q, const Propagator &qc);

12 };

��° (æ'f) Group Meeting June 28, 2012 24 / 45



Updater

1 class Updater {

2 public:

3 // for Propagator

4 virtual void solve(Propagator&, const Grid&);

5 // for Density

6 virtual void solve(blitz::Array<double,3>, const Propagator&,

7 const Propagator&, double cc) const;

8 // for Field

9 virtual void solve(Grid&, const Grid&) const;

10 virtual Updater *clone() const;

11 };

��° (æ'f) Group Meeting June 28, 2012 25 / 45



PseudoSpectral

1 class PseudoSpectral : Updater {

2 public:

3 PseudoSpectral(const UnitCell&, int Lx, int Ly, int Lz,

4 double ds);

5 // ... More constructors

6 void solve(Propagator&, const Grid&);

7 PseudoSpectral *clone() const;

8 private:

9 blitz::Array<double,3> laplace_;

10 double *fftw_in_;

11 fftw_complex *fftw_out;

12 fftw_plan p_forward_, p_backward_;

13 };

��° (æ'f) Group Meeting June 28, 2012 26 / 45



Model

1 class Model {

2 public:

3 Model(const Config&);

4 virtual void init(const Config&)=0;

5 virtual void reset(const Config&)=0;

6 virtual void update()=0;

7 virtual double H() const=0;

8 virtual double Hw() const=0;

9 virtual double Hs() const=0;

10 virtual double residual_error() const=0;

11 virtual double incomp() const=0;

12 virtual void display() const();

13 virtual void save(const string)=0;

14 virtual void save_model(const string)=0;

15 virtual void save_field(const string)=0;

16 virtual void save_density(const string)=0;

17 virtual void save_q(const string)=0;

18 };

��° (æ'f) Group Meeting June 28, 2012 27 / 45



Model AB: AB diblock copolymers

1 class Model_AB : Model {

2 public:

3 // ... Implement all virtual interface in base class Model

4 private:

5 int NA_, NB_, N_;

6 double fA_, fB_, Rg_, a_;

7 double chiAB_;

8 int Ms_, sA_, sB_;

9 double ds_;

10

11 Field *wA_, *wB_;

12 Yita *yita_;

13 Density *phiA_, *phiB_;

14 Propagator *qA_, *qB_, *qAc_, *qBc_;

15 };

��° (æ'f) Group Meeting June 28, 2012 28 / 45



Model AB::update

1 void Model_AB::update() {

2 // Step 1

3 qA_->update(*wA_);

4 qB_->set_head(qA_->get_tail());

5 qB_->update(*wB_);

6 qBc_->update(*wB_);

7 qAc_->set_head(qBc_->get_tail());

8 qAc_->update(*wA_);

9

10 // Step 2

11 phiA_->update(*qA_, *qAc);

12 phiB_->update(*qB_, *qBc);

13

14 // Step 3

15 yita_->update(*phiA_ + *phiB_ - 1.0);

16 wA_->update(N_ * chiAB_ * (*phiB_) + *yita_);

17 wB_->update(N_ * chiAB_ * (*phiA_) + *yita_);

18 }

��° (æ'f) Group Meeting June 28, 2012 29 / 45



Driver class: scft

1 class scft {

2 public:

3 scft(const string config_file, Model *pmodel);

4 void run();

5 private:

6 Config _cfg;

7 Model *model_;

8 int iter_, num_iters_;

9 double minH_, minH_var;

10 blitz::Array<double,1> residual_error_, H_, incomp_;

11

12 void init_(const string);

13 void relax_();

14 void save_param_();

15 // ... More save methods

16 void display(double t) const;

17 }

��° (æ'f) Group Meeting June 28, 2012 30 / 45



The Configuration File
Section: Model

The configuration file is a standard ini file, which can be parsed by SimpleIni of
C++ and ConfigParser of Python.

��° (æ'f) Group Meeting June 28, 2012 31 / 45



The Configuration File
Section: UnitCell and Grid

��° (æ'f) Group Meeting June 28, 2012 32 / 45



The Configuration File
Section: Algorithm and SCFT

��° (æ'f) Group Meeting June 28, 2012 33 / 45



The Configuration File
Section: Batch and xscft

��° (æ'f) Group Meeting June 28, 2012 34 / 45



TODO List

Functional aspect
Boundary conditions
Error control and smart stop criterion
Construct Model objects from configuration file
More Updaters
GUI?

Implementation aspect
Abstract Energy calculation
Abstract Error calculation
Improve Updater

Space dimension as template
Expression template

1 Field wA_, wB_;

2 Yita yita_;

3 Density phiA_, phiB_;

4 wA_ = N_ * chiAB_ * phiA_ + yita_;

5 wB_ = N_ * chiAB_ * phiB_ + yita_;

��° (æ'f) Group Meeting June 28, 2012 35 / 45



Utilities

Follow or fork Polyorder at:
https://bitbucket.org/liuyxpp/polyorder

��° (æ'f) Group Meeting June 28, 2012 36 / 45



load

load is a Perl script that enumerates the CPU loading and the number of free
cores of each given nodes. Use

$ load -h

$ ...

to check more options.

��° (æ'f) Group Meeting June 28, 2012 37 / 45



pi

pi is a Perl script that lists all processes of a user on each given nodes. Use

$ pi -v

$ ...

to check more options.

��° (æ'f) Group Meeting June 28, 2012 38 / 45



pp

pp is a Perl script that finds the full path of the executable file of a process with
given PID. Use

$ pp -v

$ ...

to check more options.

��° (æ'f) Group Meeting June 28, 2012 39 / 45



xscft

xscft is a Python script that automatically submits SCFT tasks. It use the same
configuration file as Polyorder. Use

$ xscft -h

$ ...

to check more options.

��° (æ'f) Group Meeting June 28, 2012 40 / 45



bscft

bscft is a Python script that performs basic analysis for SCFT batch tasks. It
also use the same configuration file as Polyorder. Use

$ bscft -h

$ ...

to check more options.

��° (æ'f) Group Meeting June 28, 2012 41 / 45



simmon

simmon is a Perl script that monitors the active SCFT tasks and performs basic
analysis using bscft when a batch task is done. No options are available.

��° (æ'f) Group Meeting June 28, 2012 42 / 45



gensym

gensym is a Python script that generates patterns according to space group
symmetry using Gyroid software package. It also use the same configuration file
as Polyorder. Use

$ gensym -h

$ ...

to check more options.

Symmetry Group: Ia3̄d, Grid: 64× 64× 64

��° (æ'f) Group Meeting June 28, 2012 43 / 45



Gyroid

Gyroid is a Python package that generates symmetry adapted basis functions
(SABF) based on the space group of a unit cell.

Typical usage

$ python

>>> import gyroid as gy

>>> import numpy as np

>>> N1, N2, N3 = 32, 32, 32

>>> uc = gy.UnitCell(3)

>>> group = gy.Group(3, gy.BRAVAIS, uc.shape, ’Ia-3d’)

>>> grid = gy.Grid(np.array([N1,N2,N3], group)

>>> basis = gy.Basis(group, grid)

>>> gy.render_structure_3d(basis, grid, N1, N2, N3, 1.0)

>>> exit()

$ ...

Follow or fork Gyroid at: https://bitbucket.org/liuyxpp/gyroid

��° (æ'f) Group Meeting June 28, 2012 44 / 45



Thanks!

��° (æ'f) Group Meeting June 28, 2012 45 / 45


