The Polyorder Project
A Unified Computing Framework for Self~-Consistent Field Theory

Yi-Xin Liu CG—3§)
lyx@fudan.edu.cn
http://ngpy.org

Department of Marcomolecular Science

Fudan University
Shanghai, China

June 28, 2012

|
Outline

@ The Road to Polyorder
@ C++ and Object-Oriented Programming (OOP)
@ The Design of Polyorder
Framework
Field
Updater
Model
scft

e TODO List
o Utilities

e load, pi, pp

o xscft, bscft, simmon

e gensym, Gyroid

X|—¥ (HEKR% Group Meeting June 28, 2012 2/45

The Road to Polyorder

Follow or fork Polyorder at:
https://bitbucket.org/liuyxpp/polyorder

X (5 ELK%E) Group Meeting June 28,2012 3 /45

The SCFT Algorithm

Most SCFT equations should be solved numerically.

The set of SCFT equations are highly nonlinear. A common numerical approach is
to adapt an iterative algorithm. It mainly contains three parts:

@ Solving modified diffusion equations,
@ Quadrature of propagators along the chain contour, and

© Updating potential fields with various schemes.

wp = XpsNgs (F) + Z Xpp N () + 1 (F)

p#p’
L Field w(r) |:> q(r, s) |:> Density ¢(r)J
%% _ g, o= [50, .90 7.9
Js dp pQp p — prp o dp \I,5)qp I 1p
X—# (SE k%)

Group Meeting June 28, 2012 4 /45

——
An Intuitive Implementation

PSscft of Dr. Wendi Song
The program is written in C4++ but with little OO feature.

Implementation details:
@ Initialization: PSscft, init, init2
@ Step 1: laplace, change3D, calc_q, propag
@ Step 2: calc_dens bs.cop (/export/hore/Lyx/sandbox)
o Step 3: renewfield, relax
o Other: energy, outdata, close

This implementation is very specific:
@ Must re-compile after modifying any parameters.

@ Must re-code almost all the functions for different
polymer architectures.

o Difficult to introduce new potential fields (new
interactions).

o Difficult to change space dimension.

X|—¥ (HER% Group Meeting June 28, 2012 5 /45

E—————————————————
Improved version 1 (2010.3)

CFTS
The program is written in C4++ also with little OO feature.

Implementation details:

o Initialization: allocateMemory,
initParameters, initField

FTS.cpp (/export/home/lyx/sandbox)

o Step 1: fftLaplace new, calc_q, propagation
o Step 2: calcDensity
@ Step 3: updateField, relaxation

@ Other: calcAvg, calcEnergy, outdata,
saveParameters, close

This implementation is also very specific but with some
improvements

o Parameters and data |/O using Matlab MAT file.

o Eliminate the usage of change3D.

X|—¥ (HEKR% Group Meeting June 28, 2012 6 /45

E—————————————————
Improved version 2 (2010.6)

SCFT_nApBSCSalt_CGC_Pseudospectral 1D

The program is written in C4++ also with little OO feature.

Implementation details:

o Initialization: allocateMemory,
initParameters, initField

o Step 1: fftLaplace, calc_q, propagation
o Step 2: calcDensity

@ Step 3: updateField 1S, updateField EM,
relaxation

@ Other: calcFieldError, findMax, calcAvg,
calcEnergy, outData, showRange,
printScreen, saveParameters, close

Improvements
@ More help functions.

@ Support manually select the update scheme.

X|—¥ (HER% Group Meeting

bcp_ps_1d.cpp (/export/home/lyx/sandbox)

June 28, 2012

7/45

SEE————————————
Things Quickly Mess Up

A new project should be created whenenver there is
Change of polymer architectures

Change of components

Introduction of new interactions

Introduction of new algorithms

Change of boundary conditions

° ..

A serious problem inherited is: If you want to revise a common function, such as
outData, or add a new parameter, you should update all projects simultaneously.
It's a disaster!

X—¥ (2 EX Group Meeting June 28, 2012 8 /45

C++ and OOP

Reference
Lippman, S. B.; Lajoie, J.; Moo, B. E.
C++ Primer, 4th Ed. 2005, Addison-Wesley Professional

X (5 ELK%E) Group Meeting June 28,2012 9 /45

What is OOP?

Object-oriented programming

Object-oriented programming (OOP) is a programming paradigm using " objects”
- data structures consisting of data fields and methods together with their
interactions - to design applications and computer programs. Programming
techniques may include features such as data abstraction, encapsulation,
messaging, modularity, polymorphism, and inheritance.

Group Meeting June 28, 2012 10 / 45

SEE————————————
Key OOP Features

@ Encapsulation
@ Inheritance
@ Polymorphism

Program is viewed as interacting objects
@ Each object contains algorithms to describe its behavior.
@ Program design phase involves designing objects and their algorithms.

Interface

Figure: An object

Group Meeting June 28, 2012 11 / 45

——
Encapsulation

@ Builder of a concept has detailed view
@ User of a concept has abstract view
@ Advantages of encapsulation
o Information hiding
Data Protection

Consistency
Allows change

& I

Data

=TT

Interface

\\\‘ Builder space ‘///

User space

X|—¥# (2 EF Group Meeting

June 28, 2012

12 / 45

|
Inheritance

@ Derive a new class from an existing class.
@ Create a hierarchy of related classes which share code and interface.

@ Represent a "is-a" relationship between objects.

‘ Mammal ‘ ‘ Reptile ‘

‘ Rodent H Primate H Cats ‘

‘ Squirel H Rabbit ‘

‘ Mouse

Figure: An inheritance hierarchy

Group Meeting June 28, 2012 13 / 45

-
Polymorphism
The key idea behind OOP.

derived from a Greek word meaning " many forms".

Polymorphic objects have same interfaces.

Dynamic binding.
o Extensions of the inheritance hierarchy leaves the client’s code unaltered.
o Code is localised - each class is responsible for the meaning of its interfaces.

Group Meeting June 28, 2012 14 / 45

——
Example: Shape Library

inherits y

Rectangle

Square

Group Meeting June 28, 2012 15 / 45

Shape in C++

1 class Shape {

2 public:
3 virtual double area() = 0;
a };

Group Meeting June 28, 2012 16 / 45

Rectangle, Circle

class Rectangle : public Shape {
public:
Rectangle(double h, double w):height_(h),width_(w){}
double area() const { return height_ * width_; }
private:
double height_, width_;
};

class Circle : public Shape {
public:

Circle(double r):radius_(r){}

double area() const { return PI * radius_ * radius_; }
private:

double radius_;

Group Meeting June 28, 2012

17 / 45

Square

1 class Square : public Rectangle {

2 public:

3 Square(double a):Rectangle(a, a){}
4 double area() const {

5 return this->Rectangle::area();
6 }

7};

X|—¥ (HEKR% Group Meeting June 28, 2012 18 / 45

The Power of Polymorphism

A list of Shape objects

fve

The following function can calculate the sum of area of all the shapes in the list,
even will work when new Shape types are added later on.

1 double CalculateAreaSum(Shape *ps, int N){

2 tot_area = 0.0;

3 for(int i=0; i<N; i++){

4 tot_area += ps—>area();
5 }

6 return tot_area;

Group Meeting June 28, 2012 19 / 45

The Design of Polyorder

Follow or fork Polyorder at:
https://bitbucket.org/liuyxpp/polyorder

X—H (HEK¥) Group Meeting June 28, 2012 20 / 45

Overview
The Polyorder project

Polyorder is a C++ library which aims to ease the development of polymer
self-consistent field theory (SCFT) programs.

The framework

Updater

Utilities

Configurations

X|—¥ (HEKR%

Group Meeting June 28, 2012 21 /45

——
Grid and Updater

Updater

S V=i e e)0

|
Grid

1 class Grid {

2 public:

3 Grid(const UnitCell&, int Lx, int Ly, int Lz);
4 // ... More constructors here

5 Grid & operator= (const Grid&);

6 double & operator() (int ix, int iy, int iz);

7 Grid & operator+= (const Grid&);

8 // ... More operator overloading here

9 const string name() const;

10 // ... More parameter interfaces here

11 const double mean() const;

12 // ... More grid operations here

13 virtual void update(); // interface for class hierarchy
14 protected:

15 int Lx_, Ly_, Lz_;

16 // ... More members shared with class hierarchy

17 private:
18 // ... Private members and member functions

Group Meeting June 28, 2012 23 /45

SEE————————————
Density

1 class Density : public Grid {

2 public:

3 Density(const string, const Config&, const Updaterx);

4 // ... More constructors here

5 Density & operator= (const Density&) ;

6 void update(const Propagator &q, const Propagator &qc);
7 void update(const Propagator &q, const Propagator &qc,

8 const Updaterx) ;

9 private:

10 Updater *updater_;

11 void update_(const Propagator &q, const Propagator &qc);

Group Meeting June 28, 2012 24 /45

——
Updater

1 class Updater {

2 public:

3 // for Propagator

4 virtual void solve(Propagator&, const Grid&);

5 // for Density

6 virtual void solve(blitz::Array<doub1e,3>, const Propagatoré,
7 const Propagator&, double cc) const;

8 // for Field

9 virtual void solve(Grid&, const Grid&) const;

10 virtual Updater *clone() const;

Group Meeting June 28, 2012 25 /45

——
PseudoSpectral

1 class PseudoSpectral : Updater {

2 public:

3 PseudoSpectral(const UnitCell%, int Lx, int Ly, int Lz,
4 double ds);

5 // ... More constructors

6 void solve(Propagator&, const Grid&) ;
7 PseudoSpectral *clone() const;

s private:

9 blitz: :Array<double,3> laplace_;

10 double *fftw_in_;

11 fftw_complex *fftw_out;

12 fftw_plan p_forward_, p_backward_;

X—# (HEXF¥) Group Meeting June 28, 2012 26 / 45

Model

1 class Model {

2

public:

Model(const Configk);

virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual
virtual

void
void
void

init(const Configk)=0;
reset(const Configk)=0;
update ()=0;

double H() const=0;

double Hw() const=0;

double Hs() const=0;

double residual_error() const=0;
double incomp() const=0;

void
void
void
void

void
void

display() const();

save(const string)=0;
save_model (const string)=0;
save_field(const string)=0;
save_density(const string)=0;
save_q(const string)=0;

Group Meeting

June 28, 2012

27 / 45

SEE————————————
Model AB: AB diblock copolymers

1 class Model_AB : Model {

2 public:

3 // ... Implement all virtual interface in base class Model
4 private:

5 int NA_, NB_, N_;

6 double fA_, fB_, Rg_, a_;

7 double chiAB_;

8 int Ms_, sA_, sB_;

9 double ds_;

10

11 Field *wA_, *wB_;

12 Yita *yita_;

13 Density *phiA_, *phiB_;

14 Propagator *qA_, *qB_, *gAc_, *qgBc_;

X|—¥ (HEKR% Group Meeting June 28, 2012 28 / 45

——
Model _AB::update

1 void Model_AB::update() {

2 // Step 1

3 gA_->update (*wA_) ;

" gB_->set_head(qA_->get_tail());

5 gB_->update (*wB_) ;

6 gBc_—>update (*wB_) ;

7 gAc_->set_head(gqBc_->get_tail());

8 gAc_-—>update (*wA_) ;

9

10 // Step 2

11 phiA_->update(*qA_, *qgAc);

12 phiB_->update(*qB_, *qBc);

13

14 // Step 3

15 yita_->update (*phiA_ + *phiB_ - 1.0);

16 wA_->update(N_ * chiAB_ * (xphiB_) + *yita_);
17 wB_->update(N_ * chiAB_ * (xphiA_) + *yita_);
18 }

X—# (HEXF¥) Group Meeting June 28, 2012

29 / 45

|
Driver class: scft

1 class scft {

2 public:

3 scft(const string config _file, Model *pmodel);
4 void run();

5 private:

6 Config _cfg;

7 Model *model_;

s int iter_, num_iters_;

9 double minH_, minH_var;

10 blitz: :Array<double,1> residual_error_, H_, incomp_;
11

12 void init_(const string);

13 void relax_();

14 void save_param_() ;

15 // ... More save methods

16 void display(double t) const;

X—# (HEXF¥) Group Meeting June 28, 2012 30 / 45

The Configuration File

Section: Model

The configuration file is a standard ini file, which can be parsed by Simplelni of
C++ and ConfigParser of Python.

XI—# (HEK¥)

Group Meeting June 28, 2012 31 /45

SEE————————————
The Configuration File

Section: UnitCell and Grid

Group Meeting June 28, 2012 32 /45

SEE————————————
The Configuration File

Section: Algorithm and SCFT

Group Meeting June 28, 2012 33 /45

SEE————————————
The Configuration File

Section: Batch and xscft

Group Meeting June 28, 2012 34 /45

.
TODO List

@ Functional aspect

Boundary conditions

Error control and smart stop criterion
Construct Model objects from configuration file
More Updaters

GUI?

@ Implementation aspect

Abstract Energy calculation

Abstract Error calculation

Improve Updater

Space dimension as template
Expression template

1 Field wA_, wB_;

2 Yita yita_;

3 Density phiA_, phiB_;

4+ wA_ = N_ * chiAB_ * phiA_ + yita_;
s wB_ = N_ * chiAB_ * phiB_ + yita_;

Group Meeting June 28, 2012 35 /45

Utilities

Follow or fork Polyorder at:
https://bitbucket.org/liuyxpp/polyorder

Group Meeting June 28, 2012

36 / 45

load

load is a Perl script that enumerates the CPU loading and the number of free
cores of each given nodes. Use

$ load -h
$

to check more options.

Group Meeting June 28, 2012 37 /45

pi

pi is a Perl script that lists all processes of a user on each given nodes. Use
$ pi -v

$

to check more options.

X—# (HE Group Meeting June 28, 2012 38 /45

Pp

pp is a Perl script that finds the full path of the executable file of a process with
given PID. Use

$ pp v

$

to check more options.

XI— (LK)

Group Meeting June 28, 2012 39 /45

xscft

xscft is a Python script that automatically submits SCFT tasks. It use the same
configuration file as Polyorder. Use

$ xscft -h
$

to check more options.

XI— (LK)

Group Meeting June 28, 2012 40 / 45

bscft

bscft is a Python script that performs basic analysis for SCFT batch tasks. It
also use the same configuration file as Polyorder. Use

$ bscft -h

$

to check more options.

X—# (HEXF¥) Group Meeting June 28, 2012 41/ 45

simmon

simmon is a Perl script that monitors the active SCFT tasks and performs basic
analysis using bscft when a batch task is done. No options are available.

Group Meeting June 28, 2012 42 /45

gensym

gensym is a Python script that generates patterns according to space group

symmetry using Gyroid software package. It also use the same configuration file
as Polyorder. Use

$ gensym -h
$...

to check more options.

Symmetry Group: Ia3d, Grid: 64 x 64 x 64

Group Meeting June 28, 2012 43 / 45

SEE————————————
Gyroid

Gyroid is a Python package that generates symmetry adapted basis functions
(SABF) based on the space group of a unit cell.

Typical usage

$ python

>>> import gyroid as gy

>>> import numpy as np

>>> N1, N2, N3 = 32, 32, 32

>>> uc = gy.UnitCell(3)

>>> group = gy.Group(3, gy.BRAVAIS, uc.shape, ’Ia-3d’)
>>> grid = gy.Grid(np.array([N1,N2,N3], group)

>>> basis = gy.Basis(group, grid)

>>> gy.render_structure_3d(basis, grid, N1, N2, N3, 1.0)
>>> exit()

$...

Follow or fork Gyroid at: ://bitbucket.org/liuyxpp/gyroid

X—# (HEXF¥) Group Meeting June 28, 2012 44 / 45

Thanks!

Group Meeting June 28, 2012 45 / 45

