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Equation Section 1Introduction 

The self-consistent field theory (SCFT) for many-chain systems is obtained by imposing a 

mean-field approximation to simplify the statistical field theories. The statistical field theories can 

be constructed from the particle-based model by carrying out a particle-to-field transformation. 

The general approach for a particle-to-field transformation is to invoke formal techniques related 

to Hubbard-Stratonovich transformations, which have the effect of decoupling interactions among 

particles (or polymer segments) and replacing them with interactions between the particles and 

one or more auxiliary fields.  
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(b) 

 

(c) 

Figure 1 

Fig.1a shows the particle description of a many-chain system. It can be simplified by applying 

a particle-to-field transformation leading to a single chain sitting in an external field w(r) that is 

generated by all other interacting chains, as can be seen in Fig. 1b. Fig. 1c shows an isolated single 

chain which is the basis for constructing a field-theoretic model. In principle, any chain models 

will work. In this notes, the continuous Gaussian chain model is chosen in particular. 

 

2. Continuous Gaussian chain model 

As shown in Fig. 2, the configuration of the continuous Gaussian chain is specified by a space 

curve r(s) in which s∈[0,N] is a contour variable that describes the location of a segment along the 
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backbone of the chain. The position in space of segment s is given by r(s). 

 

Figure 2 

The configuration partition function of the continuous Gaussian chain can be written 

 0 0exp( [ ])Z Ur r  (1) 

where the notation r  indicates a functional integral or a path integral overall possible space 

curve r(s). The potential energy of the continuous Gaussian chain U0 in eq. (1) can be written 
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where the square bracket notation is used to indicate that U0 is a functional of the space curve. It is 

important to note that s does not indicate arc length in the continuous Gaussian chain model, but is 

simply a parameter indexing the segments along the chain. Eq. (2) for the potential energy is 

commonly referred to as the “Edwards Hamiltonian.” 

Here we adopt the stochastic process approach to explore the properties of the continuous 

Gaussian chain model introduced by Fredrickson in the book The Equilibrium Theory of 

Inhomogeneous Polymers (2006, p42-43). We also give a naive deduction of the 

Chapman-Kolmogorov equation which is directly given in Fredrickson’s book. In practice, we are 

mainly interested in the observable quantities, i.e. those ensemble averages over the 

configurational degrees of freedom of a single polymer. The single-chain average quantities of 

primary interest are segment densities, density-density correlations, and elastic stresses, all of 

which can be connected to observables in experiments. With the single-chain partition function 

defined in eq. (1), we can define the single-chain average of an arbitrary function f(r) of the space 

curve r by 
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In particular, the average segment number density is defined by 
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where the microscopic density ˆ  for a single continuous Gaussian chain is given by 
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Substitute eq. (5) into eq. (4), we have 
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where V is the system volume, s=N/NN, the chain contour is divided into NN equally spaced parts, 

and J(r,s) is defined to be 
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where Ns is the number of spaces that the 0~s part of chain has. The system volume V can be 

obtained by integrating over all positions 

 V dr  (8) 

In eq. (7), q(r,s) represents the statistical weight for a chain of 0~s part of chain to have its end at 

position r, and q(r,N-s)=q
*
(r,s) is the propagator for a complementary chain with length N-s. This 

object is commonly referred to as a chain propagator. The coefficient before the integral of the 

first line of eq. (7) is added to ensure the propagator is normalized properly. It can be seen from 
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To calculate the single-chain partition function, just integrate J(r,s) respect to r and multiply 

it with an appropriate coefficient. It can be seen from 
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Therefore, inserting eq. (7) and eq. (10) into eq. (6), we can evaluate average segment number 

density as 
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It will be clear later that it is convenient to define a normalized single-chain partition function Q 

as 
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In this case, the external field is 0 everywhere. Since Z[w(r)=0] is just Z0, eq. (12) is reduced to 

 ( ) 0 1Q w r  (13) 

As shown in eq. (45), Z0 can be evaluated analytically, 
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Insert eq. (14) into eq. (10), we have 

 0( ) 0 ( , )Z w VZ d J sr r r  (15) 

Thus, the single-chain partition function can be expressed as 
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with J replaced by the next to last line of eq. (7). And the average segment density can be written 

as 
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by inserting eq. (16) into eq. (11). Actually, eq. (16) and eq. (17) is at least valid for any linear 

polymers as long as the continuous Gaussian chain model is used. 

The propagator q is a central quantity in statistical field theory. The ensemble averages and 

the single-chain partition function can be derived from it. Below we will derive an equation to 

compute it conveniently. 

First, we explicitly write the chain propagator q in the form: 
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where we use the discrete approach to define a path integral, such as 
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Note the short hand notation for functional differential is used, and it should be understood that 

keeping the continuous form of U0 in eq. (18) instead of discretization one is just for clarity in 

presentation (See Fredrickson, 2006 for more details about the definition and description of the 

path integral). 

 

Figure 3 

 

Then, the chain propagator after advancing a step along the chain contour from s to s+s is 

given by 
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Let s→0, the last two lines in above equation can be simplified. The functional integral from 

s to s+s can be evaluated as 
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From the second line to the third line, only one step is needed to advance from s to s+s when s 

is sufficiently small. From the fourth line to the fifth line, r(s) is constant for a certain 

configuration. Note that the range of possible values of r is (-∞,+∞) because the integrand 

approach 0 when r→∞. The delta functional can be evaluated as 
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And the second part of the potential energy can be evaluated as 
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Through insertion of eq.(19), (20), and (21) into eq. (18), we can find the Chapman-Kolmogorov 

equation given in Fredrickson’s book (eq. 2.58): 
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where Φ(r) has a physical meaning of transition probability density, which describes the 

conditional probability of a displacement r for a segment of chain of contour length s, starting 

from the position r-r at contour location s. Φ(r) is given by 
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Note that this transition probability density is properly normalized due to the proper normalization 

of the propagator. A useful feature of continuous chain models is that Chapman-Kolmogorov 

integral equations can be reduced to partial differential equations, which are referred to in 

probability theory as Fokker-Planck equations and in quantum theory as Feynman-Kac formulas. 

We illustrate this by deriving the Fokker-Planck equation associated with eq. (24). The derivation 

proceeds by performing the Taylor expansion for both sides of eq. (24) in powers of s and r, 

treating each as small. It finally reduced to the Fokker-Planck equation: 
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Thus, the Fokker-Planck equation for the continuous Gaussian chain takes the form of a 

conventional diffusion equation with a diffusion coefficient given by b
2
/6. The solution of this 

equation provides full information about the distribution of end segments, q(r,s). The full 

derivation is given by 
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where the Φ-average appearing in this equation are defined by 

 ( ) ( ) ( )f d fr r r r  (29) 

The average on the right last line of eq. (28) can be evaluated as 
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Insert eq. (30) and (31) into eq. (28), and equal it to eq. (27), we find 
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Let s→0, eq. (26) is finally obtained. 

 

3. Single continuous Gaussian chain in external field 

In this section, we want to discuss how the partition functions and distribution functions of the 

continuous Gaussian chain model are modified by the presence of an external field. The external 

field of primary interest is a spatially varying chemical potential field w(r) that acts 

indiscriminately on the polymer segments of a continuous Gaussian chain. The potential energy 

generated by this external field is given by 

 1 0
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N
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The potential energy without the presence of the external field is still given by eq. (2). Thus the 

single-chain partition function under an external field is given by 
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Similar to eq. (18), the propagator is defined as 
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Then, the chain propagator after advancing a step along the chain contour from s to s+s is given 

by 
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Inserting eq. (21), (22), (23), and the following equality 
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into eq. (36), we can find that 
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with the transition probability density function Φ still given by eq. (25). Using the same Taylor 

expansion strategy introduced in section 3, the left hand side of above equation is expanded into 

eq.(27), and the right hand side is expanded as 
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Equating eq. (27) and eq. (39) and cancelling same terms and higher order terms leads to the final 

Fokker-Planck equation 
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which can be viewed as a generalization of eq. (26) to include an external potential. The 

Fokker-Planck equation is commonly referred to as a modified diffusion equation, and sometimes, 

by analogy with the path integral formulation of quantum mechanics, as a Feynman-Kac formula. 

To find the initial condition, we first calculate the chain propagator which is just one step 

ahead, q(r, s), since q is well defined for at least one bond. q(r, s) is evaluated as follows 
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At the continuum limit, i.e. s→0, 
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The normalized single-chain partition function Q[w] can be expressed as a ratio of path 

integrals 
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It can be shown by following the calculation in eq. (10) 
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And the single-chain partition function Z0 is integrated to 



13 

 

 

0
2

20

2
12

0 1

2 2
0 0 1 1 1 22 2

2

1 12

( ')3
exp '

'2

3
exp

2

3 3
exp exp

2 2
3

exp
2

NN

N

N N N

N

NN

j i i
j i

N

N N N

Z

d s
ds

dsb

d
b s

d d d
b s b s

d
b s

r
r

r r r

r r r r r r r

r r r

2

2

2 2 2
2

2 2 2
2 2 2

2

3
exp

2

3
exp ( )

2

3 3 3
exp exp exp

2 2 2

2

3

N

N

s

N

N

N

N

N

N

N

d d
b s

dxdydz x y z d
b s

V dx x dy y dz z
b s b s b s

b s
V

r r r

r

1 1 1
2 22 2 2

3
2 2

2 2

3 3

2

3

N

N

N

N

b s b s

b s
V

 (45) 

Therefore, the normalized partition function in the term of propagator q is obtained by substituting 

eq. (44) and (45) into (43): 
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Particularly, let s=0 and invoke the initial condition given by eq. (42), we have 

 
1

[ ] ( , )Q w d q N
V

r r  (47) 

The modified diffusion equation together with the above equation fully describes the statistical 

mechanics of the continuous Gaussian chain in an external potential w(r). 

With the definition of chain propagator, it is easy to verify that the average segment number 

density is still given by eq. (11): 
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From first equal sign to the second equal sign, eq. (43) is used, from the second equal sign to the 

third equal sign eq. (45) is used, and from the fifth equal sign to the sixth equal sign eq. (34) is 

used. Substituting eq. (46) into above equation, the average segment density can be evaluated 

using 
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dsq s q N s

VQ w
r r r r

r
 (49) 

 

4. Many-chain model for two-bead chains 

In previous two sections, we deal with single-chain systems. From now on, we start to analyze 

the properties of many-chain systems. To construct a field theory for many-chain system, the 

particle-to-field transformation should be performed. The most important mathematical tool 

during the particle-to-field transformation is the delta functional, which is defined as 
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 [ ] [ ] [ ]F F  (50) 

for any functional F[]. The delta functional can be viewed as an infinite-dimensional version of 

the Dirac delta function that vanishes unless the fields (r) and ( )r  are equal at all points r in 

the domain of interest. A useful complex exponential representation of the delta functional can be 

developed by temporarily discretizing space using Mg grid points according to 
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 (51) 

The third line of the above expression follows from the application of the representation of the 

one-dimensional delta function [ ( ) ( )]i ir r  at grid ri. The final expression results from 

restoring the continuum description and can be viewed as a formal definition of the functional 

integral w  over the auxiliary field w(r). It is important to note that w(r) is a real scalar field 

and that the functional integral in eq. (51) is taken along the whole real axis at each r. 

Now, it is ready for us to examine the simplest many-chain model for diblock copolymers: 

two-bead model. In two-bead model, there are n chains in the system. Each chain has two beads A 

and B connected by a spring. The potential energy of this system has two sources of contribution: 

the intramolecular, short-ranged interferences and the intermolecular interactions among segments. 

The first energetic contribution is just sum of spring energies stored in all chains: 

 
22

0
1

( )
2

n
n

Ai Bi
j

U r r r  (52) 

where r
2n

=(r1,r2,…,r2n) denotes the set of 2n bead positions, and  is the spring constant. The 

second energetic contribution originates from the interaction between any of two beads in the 

system, whose general form is given by 
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where u(r) is the familiar pair potential function. The factor of 1/2 in the expression corrects for 

the counting of each pair of particles twice in the double sum. If we define the microscopic density 

operators for bead A and bead B as 
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where  denotes either A or B. With this definition, it follows that 
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The equality can be seen from 
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In the two-bead model, the interaction energies between segments of different types separated by 

distance 'r r  are: 

 , ( ' ) ( ')AA AAu ur r r r  (57) 

 , ( ' ) ( ')B B BBu ur r r r  (58) 
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 , ,( ' ) ( ' ) ( ')AB B A ABu u ur r r r r r  (59) 

where AAu , BBu , ABu  are the intersegment excluded volumes arising from the short range 

interactions,  is the Dirac delta function. It follows that eq. (55) can be reduced to 
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 (60) 

By applying the incompressible condition 0 ( ) ( )A Br r , the first integral in the last line of 

above equation can be evaluated as 
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 (61) 

The second integral is evaluated similary, 

 2
0( ) ( ) ( )B A Bd n dr r r r r  (62) 

Substituting eq (61) and (62) into eq (60), we have 
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 (63) 

where v0=1/0 is the volume of a statistical segment (here the volume of the bead), and  is just 

the Flory-Huggins interaction parameter: 
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2
AB AA BBu u u

v
 (64) 

The constant term in eq 63 can be ignored since it has no thermodynamic consequence. Finally we 

have 

 2
1 0( ) ( ) ( )n

A BU v dr r r r  (65) 

The canonical partition function for the two-bead system has the usual form 
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where 1/n! corrects the fact of n indistinguishable two-bead chains and  
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h

mk T
 (67) 

is the thermal wavelength, m is the mass of an atom, and h is the Planck constant. The object 

0 ( ) ( )A Br r  denotes a functional delta function that imposes a local incompressibility 

constraint. With the potential energies given in eq. (52) and (65), we can write the partition 

function as 
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To transform the canonical partition function in the above equation into statistical field theory, the 

Hubbard-Stratonovich transformation is performed. In eq. (68), [ ( ), ( )]A BZ r r  is a functional of 

( )A r  and ( )B r . By utilizing eq. (50) twice, we have 
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Inserting the functional form of Z in eq. (68) into the last line of eq. (69), we have 
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 (70) 

The delta functionals in the above are then replaced by the complex exponential representation 

introduced in eq. (51), which leads to 
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The last line of above equation is r
2n

 dependent, which can be seen from 
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U0 is also r
2n

 dependent and all other terms in eq. (71) are r
2n

 independent. Therefore, we can 

rearrange eq. (71) into two parts, one is r
2n

 dependent and the other is r
2n

 independent: 
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Now, let’s look closely at the last line of above equation. It can be evaluated as 
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Remarkably, the integral in the last line is just the single-chain partition function in the external 

field that is internally generated in the many-chain two-bead systems: 
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Since there are only two beads in a single chain, there is no need to go through the tedious 

procedures that are introduced in section 4 for long chain polymers. However, it is still convenient 

to define a normalized single-chain partition function 
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where the denominator in the right hand side of above equation can be integrated analytically: 
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 (77) 

It follows that 
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and 

 

3

2

3

2

2
( ) [ , ]

2
exp ln [ , ]

n

n
s A B

n

A B

Z V Q iw iw

V n Q iw iw

 (79) 

Upon combining eq. (73) and eq. (79), the particle-to-field transformation is complete. The 

canonical partition function can be expressed as the following statistical field theory: 
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where the functional 

 

0 0( ) ( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( )] ln [ , ]A B A A B B A B A BH d v iw iw i n Q iw iwr r r r r r r r r r

 (81) 

is referred to as an “effective Hamiltonian”, and the prefactor is 
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Before we proceed to calculate the average properties, among which the average local bead (A 

or B) number density ( )r  of this two-bead chain system is of primary interest, we first 

establish a relation between the single-chain density operator 1 ( )r  and the normalized 

single-chain partition function Q. The definition of the single-chain density operator is 

 1( ) ( )r r r  (83) 

The relation is given by 
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To verify above relation, we invoke one of the properties of functional derivatives: 
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Thus, it is easy to show that eq. (84) is correct: 
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 (87) 

Eq. (85) can be proved similarly. The single-chain density operator 1 ( )r  is important because 

we can conveniently find its ensemble average based on the approach sketched in section 3. With 

the knowledge of the single-chain density operator, it is straightforward to calculate the average 

local bead number density using 

 1( ) ( )nr r  (88) 

It is important to point out that the equality in eq. (88) is universal for any many-chain model with 

polymer chains described by the continuous Gaussian chain model whose ends are free. Therefore, 

the complex many-chain system is effectively reduced to the system of a single chain in external 

field. Note the external field here is generated internally due to long-range interactions. 

To prove eq. (88), we will follow the approach presented in Fredrickson’s book p.141-142. 

The partition function in eq. (66) is augmented with a “source term” involving a field J(r) that is 

conjugate to the microscopic density: 
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The logarithm of Z is a generating functional in the sense that functional derivatives with respect 

to J(r) provide expressions from the connected (cumulant) correlation functions of density. In 

particular, 
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 (90) 

In order to compute the derivatives on the right-hand side of the above equation, it is helpful to 

transform to a field-theoretic representation of Z by retracing that led from eq. (66) to eq. (80). 

One obtains the following field theory: 
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where J enters the effective Hamiltonian only as a shift in the argument of Q. It follows that 

 [ 0, 0]A BZ J J Z  (93) 

 [ 0, 0]A BH J J H  (94) 

The right-hand side of eq. (88) can thus be evaluated as 
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 (95) 

Inserting eq. (84) or eq. (85) into the above equation, eq. (88) is recovered. 

Finally, It is easy to calculate the ensemble average of the single-chain density operator 
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and similarly 
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Now that we have the tools for calculating the ensemble average densities for A and B beads, 

we are ready to derive the self-consistent field theory. The self-consistent field theory is obtained 

by imposing the mean-field approximation to the statistical field theory. The mean-field SCF 

equations are obtained by the saddle-approximation, where one sets 

 0
A

H
 (98) 

 0
B

H
 (99) 

 0
H

 (100) 

It is easy to find all above variations which are 

 0( ) ( ) ( )A Bw vr r r  (101) 

 0( ) ( ) ( )B Aw vr r r  (102) 

 0 ( ) ( ) 0A Br r  (103) 

where all field variables are pure imaginary. 
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5. Many-chain model for A-B block copolymers 

In this section, we will consider a more complicated system: A-B diblock copolymers (Model 

E in Fredrickson’s book p159-161). In principle, the techniques derived in the previous section are 

generally applicable. Practically, however, one must pay attention to the effect of joint point that 

connects A and B blocks which complicates the construction of the chain propagator. 

 

Figure 4 

Here, a continuous Gaussian chain model of an A-B diblock copolymer is considered, as 

shown in Fig. 4. The copolymer has a total polymerization index of N; the section 0≤s≤fN (solid) 

being comprised of type A segments and the section fN≤s≤N (dashed) comprised of type B 

segments. The parameter f can be interpreted as the fraction of the copolymer that is type A. If the 

A and B segments are further defined to have equal volumes, then f corresponds to the average 

volume fraction of type A segments. We assume statistical segment lengths are the same for type A 

segments and type B segments. 

By analogy to many-chain model for two-bead chain, we derive the statistical field theory as 

follows. The potential energy from intramolecular, short-ranged interferences is obtained by 

extending eq. (2) to an n-chain system: 
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The potential energy from intermolecular interactions among segments and the long-range 

interferences has the similar general form as eq. (53) 
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The segment pair of same type has no pair interactions and the segment of type A interacting with 

the segment of type B is the same as the segment of type B interacting with the segment of type A. 

Thus, eq. (105) reduces to 
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where uA,B denotes the pair interaction energy between segment of type A and segment of type B. 

With the definition of microscopic density operators 
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eq. (106) can be expresses as 
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It can be seen from 
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If we further introduce the Flory-type pair interaction energy 
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 ( ' ) ( ')AA AAu ur r r r  (111) 

 ( ' ) ( ')AB ABu ur r r r  (112) 

 ( ' ) ( ')AB ABu ur r r r  (113) 

Following the same procedure of eq (60), we have 
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By applying the incompressible condition 0 ( ) ( )A Br r , the first integral can be evaluated 

as 
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Similarly, the other integral can be evaluated to be 

 2
0( ) (1 ) ( ) ( )A A Bd f nN dr r r r r  (116) 

Substituting eq (115) and (116) into eq (114), we have 
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The Flory-Huggins interaction parameter is again given by 
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and the constant term is ignored to give the final form of Flory-type energy 
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The canonical partition function of diblock copolymers is again similar to that of two-bead chain 

system 
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Inserting eq. (104) and (119) into above equation, we have 
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Using the delta functionals, it changes to 
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The delta functionals are then replaced by their complex exponential representations 
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The last line of above function can be evaluated the same as eq. (72), which leads to 
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Substitute above equation into eq. (123), we have 
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The last line of above equation is evaluated as 
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The integral in the last line of above equation is just the single-chain partition function 
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The first term in the exponential is just the internal energy of a continuous Gaussian chain, the 

second term describes the interaction between A block and the corresponding external field which 

is generated internally, and the third term describes the interaction between B block and the 

corresponding external field. 

The chain propagator is defined similarly to eq. (35). However, it has two forms depending on 

the value of s. For 0≤s≤fN, it is defined as 
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Retracing the steps from eq. (36) to eq. (40), we can obtain the Fokker-Planck equation 
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Similarly, for fN≤s≤N, the chain propagator is defined as 
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and the resulted Fokker-Planck equation is given by 
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The initial condition is 

 ( ,0) 1q r  (132) 

The normalized single-chain partition function is obtained by following the steps from eq. (43) to 

eq. (46) 
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In particular, for s=0, Q is evaluated to be 
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With the definition of Q, we now reach the final result of the statistical field theory for diblock 

copolymer melts: 

 0 exp( )A B A BZ Z w w H  (135) 

where the effective Hamiltonian is 
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and the explicit form of the prefactor Z0 is unimportant. 

The single-chain partition function describes a single chain in an external field. In light of 

section 3, we can define two single-chain density operators: 
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Invoking the universal relation (eq. (88)) between the average segment density and the average 

single-chain segment density established in section 4, we have 

 1( ) ( )A Anr r  (139) 

 1( ) ( )B Bnr r  (140) 

Therefore, we only need to calculate the average single-chain segment densities. 

Since the external field exerting on A block is different from that exerting on B block, as can 

be seen in the single-chain partition function (eq. (127)), it is impossible to calculate the average 
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single-chain segment densities from only q propagator. Taking 1 ( )A r  as an example, we see 

that 
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The last line of above equation is neither q(r, s) nor q(r, N-s). However, we can rewrite it to 
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This expression says it has the same structure of the chain propagator q, but instead of starting 
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propagation from the end of block A, it starts at the end of block B. Note that the range of N-s in 

the eq. (142) is (1-f)N≤s≤N. So we can define a complementary chain propagator q
*
 when s is in 

the range of (1-f)N≤s≤N: 
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This q
*
 also satisfies a Fokker-Planck equation (for (1-f)N≤s≤N) 
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Using the definition q
*
 and invoking the definition of Q, eq. (141) becomes 
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The derivation of the above equation for the segment of type B is similar. By retracing the 

steps from eq. (141) to eq. (145), we can obtain the average single-chain segment density 
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In the above, the range for N-s is 0≤s≤(1-f)N, and the form of the complementary chain propagator 

q
*
 defined in this range is 
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And it satisfies the following Fokker-Planck equation (for 0≤s≤(1-f)N) 
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As long as we find the tools for calculating the ensemble average densities for A and B beads, 

we are ready to derive the self-consistent field theory. The self-consistent field theory is obtained 

by imposing the mean-field approximation to the statistical field theory. The mean-field SCF 

equations are obtained by the saddle-approximation which has the same expressions as in eq. 

(101), eq. (102), and eq. (103), but with ensemble average densities according to this section. 
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6. Many-chain model for solutions of A-B diblock copolyelectrolytes 

In this section, we will extend the many-chain model for diblock copolymer melts to charged 

systems. In particular, we will consider A-B diblock copolyelectrolytes in a solution of 

small-molecules, usually water, with presence of salt. We treat the solvent explicitly, which 

interacts with polymer segments with a Flory-type interaction. The chains are again taken to be 

continuous Gaussian chains and the charge distribution can be either smeared (corresponding to 

strongly dissociating polyelectrolytes, e.g. PAA) and annealed (corresponding to weakly 

dissociating polyelectrolytes, e.g. polyethylene-poly(acrylic acid) statistical copolymer). We also 

assume that the counterions dissociated from polyelectrolytes are identical to the ions form salt 

that carry the same type of charge, and denote cations by + and anions by -. Integer variables v+>0, 

v- < 0, and vP are used to denote the valencies of cations, anions and the ions bounded to P (=A, B) 

polymer segments, respectively. 

In this model, besides the potential energy for the continuous Gaussian chain and the potential 

energy from the intermolecular interactions among polymer segments and solvent molecules, there 

is an additional energetic contribution arisen from the long-ranged Coulomb interactions. The 

Coulomb interaction is the most distinctive feature for charged systems. The Coulomb potential 

acting between an ion with charge eZj and a second ion with charge eZk, separated by a distance r 

in a uniform dielectric medium, can be written 
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where cgs units are employed and  is the dielectric constant. The Coulomb potential is often 

rewritten in the form 
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where 
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is the so-called Bjerrum length. It defines a length scale at which the electrostatic interaction is 

comparable to the thermal energy kBT. 

The electrostatic interaction energy can be obtained by summing the electric potential of all 
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pairs of charged species across the whole system, which also has the similar general form of eq. 

(53) 
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where n, n+ and n- are the number of diblock copolymers, cations and anions, respectively. The 

first to the sixth lines of eq. (152) represent the Coulomb interactions between polymer segments, 

between polymer segments and cations, between polymer segments and anions, between cations, 

between cations and anions, and between anions, respectively. The singular interactions of each 

ion with itself included in eq. (152) only lead to a shift in chemical potential of each species that 

has no thermodynamic consequence. To write eq. (152) in a compact form, it is helpful to define a 

microscopic charge density 

 
1

( ) ( )
n

j
j

r r r  (153) 

 
1

( ) ( )
n

j
j

r r r  (154) 

 0
1 1

( ) ( ( )) ( ( ))

( ) ( )

n nfN N

e A A j B B jfN
j j

v ds s v ds s

v v

r r r r r

r r

 (155) 

where A and B are the degree of ionization for block A and block B, respectively. In writing eq. 

(155), we have assumed the smeared charge distribution. The charge density operator ( )e r  is in 

units of e. The system satisfies the electroneutrality condition, thus 
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So we have the relation between the numbers of different species: 

 (1 ) 0A A B Bv nfN v n f N v n v n  (157) 

The electrostatic interaction energy can thus be written 
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This equality can be verified as follows 
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 (159) 

The sum of 1
st
, 2

nd
, 3

rd
 and 4

th
 terms after the second equal sign in eq. (159) corresponds to the 

first term of the right-hand side of eq. (152). Similarly, the sum of 3
rd

, 7
th

, 9
th

, and 10
th
 terms, 4

th
, 

8
th
, 13

th
, and 14

th
 terms, 11

th
 terms, the sum of 12

th
 and 15

th
 terms, and 16

th
 terms after the second 
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equal sign in eq. (159) correspond to the 2
nd

, 3
rd

, 4
th

, 5
th

, and 6
th
 of the right-hand side of eq. (152), 

respectively. 

The potential energy from unperturbed continuous Gaussian chains is still given by (the same 

as eq. (104)) 
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The short-range (e.g. van der Waals) interaction energy of the system is approximated by the 

energy arisen from Flory-type interactions. Following the treatment analogous in section 5, we can 

express the short-range interaction energy as 

 1 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )SnN n
AB A B AS A S BS B SU v d v d v dr r r r r r r r r r  (161) 

where AB  is the Flory-Huggins interaction parameter between polymer segments of type A and 

type B, AS  is that between the polymer segments of type A and the solvent molecules, and 

BS  is that between the polymer segments of type A and the solvent molecules. In the above 

equation, there are two additional terms describing the Flory-type interactions between polymer 

segments and solvent molecules compared to eq. (114). In eq. (161), the volumes of the statistical 

segment (either of type A or B) and the solvent molecule are assumed to be identical. The 

microscopic segment density and microscopic solvent density are defined to be 
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Combining the potential energies in eq. (158), (160) and (161), we can write the canonical 

partition function as 
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 (165) 

The next task is to perform a particle-to-field transformation to the above partition function. 

To present here more clearly, we will do the transformation separately. Since it is not necessary to 

do transformation on U0, we first do the transformation for U1. Upon using the identity involving a 

delta functional (eq. (50)), we have 
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 (166) 

And replacing the delta functionals with their complex exponential representations, it becomes 
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 (167) 

The exponential term with Ue can be treated similarly. Upon using the identity involving the 

delta functional (eq. (50)), we have 
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Substituting the complex exponential form of the delta functional into above equation leads to 
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Fortunately, the functional inside the curly bracket is a typical Gaussian functional which can be 

evaluated analytically. One of Gaussian integral formulas is (see Fredrickson’s book p398-399) 
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 (170) 

where A(x,x’) is assumed to be real, symmetric, and positive definite. The functional inverse of A, 

A
-1

, is defined by 

 1' ( , ') ( ', '') ( '')dx A x x A x x x x  (171) 

and the constant C0 is 
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In our case here, A is 
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its functional inverse is 
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and J is 

 ( )J r  (175) 

It follows that 
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The integral in the above equation can be evaluated by integrating by part 
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Inserting eq. (177) into eq. (176), we have 
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Then the above equation is substituted into eq. (169), which leads to the final field form for 

electrostatic interaction energy 
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where the integration result with respect to  is absorbed into D0. In literature, an effective 

Hamiltonian for electrostatic interaction energy is often used, which is just the integral inside the 

square bracket in the second line of eq. (179): 
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Note that the real electric potential field  is usually replaced by a pure imaginary variable  in 

literature. In this convention, the Hamiltonian is expressed as 
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The negative sign is coming from the square of imaginary number i: 
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It is now ready for us to finish the particle-to-field transformation. Substituting eq. (167), 

(179), the partition function is given by 
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Rearranging the above equation in terms of r
nN+n

S
+n

+
+n

- dependent and independent part, we have 
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The last two lines of the above equation can be evaluated by substituting back the definition of all 

microscopic density operators 
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The three integrals in the last three lines of above equations can be interpreted as single-particle 
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partition functions for the solvent molecule, the cations, and the anions, respectively. Thus, we 

have 

 exp ( )S SZ d iwr r  (186) 

 exp ( )Z d v ir r  (187) 

 exp ( )Z d v ir r  (188) 

We then define the normalized partition functions as in section 5 accordingly, 
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The ensemble average particle density for these three species can be calculated as 
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where the relation of eq. (88) has been used.  

Now, let’s turn to the first term after the last equal sign of eq. (185). It should be looked 

familiar though it is a rather complicated object at a first glance. In comparison with eq. (127), we 

immediately find that the integral in the curly bracket of that term is just the single-chain partition 

function for the charged diblock copolymer, which has the form 
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The only different between the single-chain partition functions of the neutral diblock copolymer 

and the charged diblock copolymer is the later has an additional field describing the electrostatic 

interactions. Therefore, there is no need to go through the steps from eq. (128) to eq. (148) to 

obtain expressions for calculating the normalized single-chain partition functions, chain 

propagators, and the ensemble average density of type A segments and type B segments. Just 

replacing wA by  

 A A Aw v  (196) 

and replacing wB by 

 B B Bw v  (197) 

Here, we only summarize the final results: 

The statistical field theory for diblock copolyelectrolyte solutions is 

 exp( )A B S A B SZ w w w H  (198) 

where 
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and the prefactor Z0 is unimportant. 

The normalized single-chain partition function can be calculated by 
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or equivalently by 
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where the propagator q is determined by the following modified diffusion functions 
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and the complementary chain propagator q
*
 is determined similarly by 
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The ensemble average segment densities of A and B segments are constructed by composing 

forward and backward propagators (propagator and complementary propagator), giving rise to the 

expressions 
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Note that each field variable appearing in eq. (199), (202), and (203) is associated with the 

imaginary number i. Thus we can absorb i into field variables which results in pure imaginary 

fields. With these changes, eq. (199), (202), and (203) become 
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The self-consistent field theory is obtained by imposing the mean-field approximation to the 

statistical field theory. The mean-field SCF equations are obtained by the saddle-approximation, 

where one sets 
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 (209) 
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 (213) 

The first four variations of in above equations can be easily done, leading to the following four 

equations 
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 0 ( ) ( ) ( ) 0A B Sr r r  (217) 

while the last one is much more complicated. There are four terms in H of eq. (206) are  

dependent, and their variations with respect to  are evaluated as follows 
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It follows that 

 
21 1

( ) [ ( ) ( )]
8 4B

d
l

r r r r  (219) 

The other variations are 
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Continued by 
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and 
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and 
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Combining eq. (206), eq. (213), eq. (219), (221), eq. (222), and eq. (223), we have 
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This is a Poisson-Boltzmann equation with variable coefficient in the Laplacian which is typical in 

equilibrium electrostatic systems. 
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